Integrative Study Supports the Role of Trehalose in Carbon Transfer From Fungi to Mycotrophic Orchid
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34956293
PubMed Central
PMC8695678
DOI
10.3389/fpls.2021.793876
Knihovny.cz E-zdroje
- Klíčová slova
- carbohydrate, carbon transfer, histochemical localization, mycorrhiza, mycotrophy, orchid, trehalase, trehalose,
- Publikační typ
- časopisecké články MeSH
Orchids rely on mycorrhizal symbiosis, especially in the stage of mycoheterotrophic protocorms, which depend on carbon and energy supply from fungi. The transfer of carbon from fungi to orchids is well-documented, but the identity of compounds ensuring this transfer remains elusive. Some evidence has been obtained for the role of amino acids, but there is also vague and neglected evidence for the role of soluble carbohydrates, probably trehalose, which is an abundant fungal carbohydrate. We therefore focused on the possible role of trehalose in carbon and energy transfer. We investigated the common marsh orchid (Dactylorhiza majalis) and its symbiotic fungus Ceratobasidium sp. using a combination of cultivation approaches, high-performance liquid chromatography, application of a specific inhibitor of the enzyme trehalase, and histochemical localization of trehalase activity. We found that axenically grown orchid protocorms possess an efficient, trehalase-dependent, metabolic pathway for utilizing exogenous trehalose, which can be as good a source of carbon and energy as their major endogenous soluble carbohydrates. This is in contrast to non-orchid plants that cannot utilize trehalose to such an extent. In symbiotically grown protocorms and roots of adult orchids, trehalase activity was tightly colocalized with mycorrhizal structures indicating its pronounced role in the mycorrhizal interface. Inhibition of trehalase activity arrested the growth of both symbiotically grown protocorms and trehalose-supported axenic protocorms. Since trehalose constitutes only an inconsiderable part of the endogenous saccharide spectrum of orchids, degradation of fungal trehalose likely takes place in orchid mycorrhiza. Our results strongly support the neglected view of the fungal trehalose, or the glucose produced by its cleavage as compounds transported from fungi to orchids to ensure carbon and energy flow. Therefore, we suggest that not only amino acids, but also soluble carbohydrates are transported. We may propose that the soluble carbohydrates would be a better source of energy for plant metabolism than amino acids, which is partially supported by our finding of the essential role of trehalase.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Institute of Botany Czech Academy of Sciences Průhonice Czechia
Zobrazit více v PubMed
Alexander C., Alexander I. J., Hadley G. (1984). Phosphate uptake by Goodyera repens in relation to mycorrhizal infection. New Phytol. 97, 401–411. doi: 10.1111/j.146910.8137.1984.tb03606.x DOI
Alghamdi S. A. (2020). Biological role of mycorrhizal fungi on the assimilation and transportation of carbon and nitrogen to Anacamptis palustris and Anacamptis laxiflora. Saudi J. Biol. Sci. 27, 465–473. doi: 10.1016/j.sjbs.2019.11.010, PMID: PubMed DOI PMC
Arditti J. (1967). Factors affecting the germination of orchid seeds. Bot. Rev. 33, 1–97. doi: 10.2307/4353735 DOI
Arditti J., Ghani A. K. A. (2000). Numerical and physical properties of orchid seeds and their biological implications. New Phytol. 145, 367–421. doi: 10.1046/j.1469-8137.2000.00587.x, PMID: PubMed DOI
Asano N., Takuji Y., Yukihiko K., Katsuhiko M. (1987). Effect of validamycins on glycohydrolases of Rhizoctonia solani. J. Antibiot. 40, 526–532. doi: 10.7164/antibiotics.40.526, PMID: PubMed DOI
Bernard N. (1902). Infection et tubérisation chez les Ophrydées et la ficaire. Rev. Génerale Bot. 14, 17–225.
Best M., Koenig K., McDonald K., Schueller M., Rogers A., Ferrieri R. A. (2011). Inhibition of trehalose breakdown increases new carbon partitioning into cellulosic biomass in Nicotiana tabacum. Carbohydr. Res. 346, 595–601. doi: 10.1016/j.carres.2011.01.018, PMID: PubMed DOI
Bougoure J. J., Brundrett M. C., Grierson P. F. (2010). Carbon and nitrogen supply to the underground orchid. Rhizanthella gardneri. New Phytol. 186, 947–956. doi: 10.1111/j.1469-8137.2010.03246.x, PMID: PubMed DOI
Bougoure J., Ludwig M., Brundrett M., Cliff J., Clode P., Kilburn M., et al. . (2014). High-resolution secondary ion mass spectrometry analysis of carbon dynamics in mycorrhizas formed by an obligately myco-heterotrophic orchid. Plant Cell Environ. 37, 1223–1230. doi: 10.1111/pce.12230, PMID: PubMed DOI
Burgeff H. (1936). Samenkeimung der Orchideen und Entwicklung ihrer Keimpflanzen mit einem Anhang über praktische Orchideenanzucht. 1st Edn. Jena: Gustav Fischer.
Cameron D. D., Johnson I., Read D. J., Leake J. R. (2008). Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid. Goodyera repens. New Phytol. 180, 176–184. doi: 10.1111/j.1469-8137.2008.02533.x, PMID: PubMed DOI
Cameron D. D., Leake J. R., Read D. J. (2006). Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol. 171, 405–416. doi: 10.1111/j.1469-8137.2006.01767.x, PMID: PubMed DOI
Ceusters N., Luca S., Feil R., Claes J. E., Lunn J. E., Van Den Ende W., et al. . (2019). Hierarchical clustering reveals unique features in the diel dynamics of metabolites in the CAM orchid Phalaenopsis. J. Exp. Bot. 70, 3269–3281. doi: 10.1093/jxb/erz170, PMID: PubMed DOI PMC
Dalhlqvist A., Brun A. (1962). A method for the histochemical demonstration of disaccharidase activities: application to invertase and trehalase in some animal tissues. J. Histochem. Cytochem. 10, 294–302. doi: 10.1177/10.3.294, PMID: PubMed DOI
Dearnaley J. D. W., Cameron D. D. (2017). Nitrogen transport in the orchid mycorrhizal symbiosis – further evidence for a mutualistic association. New Phytol. 213, 10–12. doi: 10.1111/nph.14357, PMID: PubMed DOI
Dearnaley J., Perotto S., Selosse M. A. (2016). “Structure and development of orchid mycorrhizas,” in Molecular Mycorrhizal Symbiosis. ed. Martin F. (New Jersey: Wiley Blackwell; ), 63–86.
Delatte T. L., Sedijani P., Kondou Y., Matsui M., de Jong G. J., Somsen G. W., et al. . (2011). Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiol. 157, 160–174. doi: 10.1104/pp.111.180422, PMID: PubMed DOI PMC
Delorge I., Janiak M., Carpentier S., Van Dijck P. (2014). Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front. Plant Sci. 5:e00147. doi: 10.3389/fpls.2014.00147, PMID: PubMed DOI PMC
Doehlert D. C., Felker F. C. (1987). Characterization and distribution of invertase activity in developing maize (Zea mays) kernels. Physiol. Plant. 70, 51–57. doi: 10.1111/j.1399-3054.1987.tb08695.x DOI
Ernst R. (1967). Effect of carbohydrate selection on the growth rate of freshly germinated Phalaenopsis and Dendrobium seed. Am. J. Bot. 36, 1068–1073.
Ernst R., Arditti J., Healey P. L. (1971). Carbohydrate physiology of orchid seedlings. II. Hydrolysis and effects of oligosaccharides. Am. J. Bot. 58, 827–835. doi: 10.2307/2441560 PubMed DOI
Faria J., Jelihovschi E., Allaman I. (2014). Conventional Tukey Test. Available at: https://cran.r-project.org/web/packages/TukeyC/index.html (Accessed January 27, 2016).
Fochi V., Chitarra W., Kohler A., Voyron S., Singan V. R., Lindquist E. A., et al. . (2017). Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol. 213, 365–379. doi: 10.1111/nph.14279, PMID: PubMed DOI
Frison M., Parrou J. L., Guillaumot D., Masquelier D., François J., Chaumont F., et al. . (2007). The Arabidopsis thaliana trehalase is a plasma membrane-bound enzyme with extracellular activity. FEBS Lett. 581, 4010–4016. doi: 10.1016/j.febslet.2007.07.036, PMID: PubMed DOI
Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x, PMID: PubMed DOI
Gargas A., Taylor J. W. (1992). Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18s rDNA from lichenized fungi. Mycologia 84:589. doi: 10.2307/3760327 DOI
Gebauer G., Meyer M. (2003). 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol. 160, 209–223. doi: 10.1046/j.1469-8137.2003.00872.x PubMed DOI
Goddijn O. J., Verwoerd T. C., Voogd E., Krutwagen R. W., de Graaf P. T., van Dun K., et al. . (1997). Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol. 113, 181–190. doi: 10.1104/pp.113.1.181, PMID: PubMed DOI PMC
Hadley G. (1984). Uptake of [14C]glucose by asymbiotic and mycorrhizal orchid protocorms. New Phytol. 96, 263–273. doi: 10.1111/j.1469-8137.1984.tb03563.x DOI
Hadley G., Johnson R. P. C., John D. A. (1971). Fine structure of the host-fungus interface in orchid mycorrhiza. Planta 100, 191–199. doi: 10.1007/BF00387035, PMID: PubMed DOI
Hadley G., Purves S. (1974). Movement of 14Carbon from host to fungus in orchid mycorrhiza. New Phytol. 73, 475–482. doi: 10.1111/j.1469-8137.1974.tb02126.x DOI
Hadley G., Williamson B. (1971). Analysis of post infection growth stimulus in orchid mycorrhiza. New Phytol. 70, 445–455. doi: 10.1111/j.1469-8137.1971.tb02546.x DOI
Hampp R., Schaeffer C. (1999). “Mycorrhiza — carbohydrate and energy metabolism” in Mycorrhiza. eds. Varma A., Hock B. (Berlin: Springer Berlin Heidelberg; ), 273–303. doi: 10.1007/978-3-662-03779-9_12 DOI
Hildebrandt T. M., Nunes Nesi A., Araújo W. L., Braun H. P. (2015). Amino acid catabolism in plants. Mol. Plant 8, 1563–1579. doi: 10.1016/j.molp.2015.09.005 PubMed DOI
ICUMSA (2011). Method GS7/4/8-24: The Determination of Glucose, Fructose and Sucrose in Cane Juices, Syrups and Molasses and of Sucrose in Beet Molasses by High Perfromance Ion Chromatography. International Commission for Uniform Methods of Sugar Analysis. Berlin, Germany: Verlag Dr. Albert Bartens KG.
Jheng F. Y., Do Y. Y., Liauh Y. W., Chung J. P., Huang P. L. (2006). Enhancement of growth and regeneration efficiency from embryogenic callus cultures of Oncidium “Gower Ramsey” by adjusting carbohydrate sources. Plant Sci. 170, 1133–1140. doi: 10.1016/j.plantsci.2006.01.016 DOI
Johnson T. R., Kane M. E. (2013). Differential germination and developmental responses of Bletia Purpurea (Orchidaceae) to mannitol and sorbitol in the presence of sucrose and fructose. J. Plant Nutr. 36, 702–716. doi: 10.1080/01904167.2012.748798 DOI
Jorge J. A., Polizeli M. D. L. T. M., Thevelein J. M., Terenzi H. F. (1997). Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol. Lett. 154, 165–171. doi: 10.1016/S0378-1097(97)00332-7, PMID: PubMed DOI
Kameda Y., Asano N., Yamaguchi T., Matsui K. (1987). Validoxylamines as trehalase inhibitors. J. Antibiot. (Tokyo) 40, 563–565. doi: 10.7164/antibiotics.40.563, PMID: PubMed DOI
Koide R. T., Shumway D. L., Stevens C. M. (2000). Soluble carbohydrates of red pine (Pinus resinosa) mycorrhizas and mycorrhizal fungi. Mycol. Res. 104, 834–840. doi: 10.1017/S0953756299002166 DOI
Kramer C. Y. (1956). Extension of multiple range tests to group means with unequal numbers of replications. Int. Biometric Soc. 12, 307–310. doi: 10.2307/3001469 DOI
Kuga Y., Sakamoto N., Yurimoto H. (2014). Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytol. 202, 594–605. doi: 10.1111/nph.12700, PMID: PubMed DOI
Leake J. R. (1994). The biology of myco-heterotrophic ('saprophytic’) plants. New Phytol. 127, 171–216. doi: 10.1111/j.1469-8137.1994.tb04272.x PubMed DOI
Lewis D. H., Smith D. C. (1967). Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytol. 66, 143–184. doi: 10.1111/j.1469-8137.1967.tb05997.x DOI
Liu T. H., Lin J. J., Wu R. Y. (2006). The effects of using trehalose as a carbon source on the proliferation of Phalaenopsis and Doritaenopsis protocorm-like-bodies. Plant Cell Tissue Organ Cult. 86, 125–129. doi: 10.1007/s11240-006-9092-4 DOI
López M. F., Männer P., Willmann A., Hampp R., Nehls U. (2007). Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. New Phytol. 174, 389–398. doi: 10.1111/j.1469-8137.2007.01983.x, PMID: PubMed DOI
Luginbuehl L. H., Menard G. N., Kurup S., Van Erp H., Radhakrishnan G. V., Breakspear A., et al. . (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175–1178. doi: 10.1126/science.aan0081, PMID: PubMed DOI
Lunn J. E., Delorge I., Figueroa C. M., Van Dijck P., Stitt M. (2014). Trehalose metabolism in plants. Plant J. 79, 544–567. doi: 10.1111/tpj.12509 PubMed DOI
Martin F., Boiffin V., Pfeffer P. E. (1998). Carbohydrate and amino acid metabolism in the Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol. 118, 627–635. doi: 10.1104/pp.118.2.627, PMID: PubMed DOI PMC
Martin F., Ramstedt M., Söderhäll K. (1987). Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas. Biochimie 69, 569–581. doi: 10.1016/0300-9084(87)90176-3, PMID: PubMed DOI
Merckx V. S. F. T. (2013). Mycoheterotrophy: The Biology of Plants Living on Fungi. New York, NY: Springer.
Miller M. E., Chourey P. S. (1992). The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4, 297–305. doi: 10.2307/3869541, PMID: PubMed DOI PMC
Miura C., Yamaguchi K., Miyahara R., Yamamoto T., Fuji M., Yagame T., et al. . (2018). The mycoheterotrophic symbiosis between orchids and mycorrhizal fungi possesses major components shared with mutualistic plant-mycorrhizal symbioses. Mol. Plant-Microbe Interact. 31, 1032–1047. doi: 10.1094/MPMI-01-18-0029-R, PMID: PubMed DOI
Mollison J. E. (1943). Goodyera repens and its endophyte. Trans. Bot. Soc. Edinburgh 33, 391–403. doi: 10.1080/13594864309441393 DOI
Müller J., Boller T., Wiemken A. (1995). Effects of validamycin A, a potent trehalase inhibitor, and phytohormones on trehalose metabolism in roots and root nodules of soybean and cowpea. Planta 197, 362–368. doi: 10.1007/BF00202658 DOI
Nakamura S. J. (1982). Nutritional conditions required for the non-symbiotic culture of an achlorophyllous orchid Galeola septentrionalis. New Phytol. 90, 701–715. doi: 10.1111/j.1469-8137.1982.tb03279.x DOI
Nehls U. (2008). Mastering ectomycorrhizal symbiosis: The impact of carbohydrates. J. Exp. Bot. 59, 1097–1108. doi: 10.1093/jxb/erm334, PMID: PubMed DOI
Nehls U., Göhringer F., Wittulsky S., Dietz S. (2010). Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol. 12, 292–301. doi: 10.1111/j.1438-8677.2009.00312.x, PMID: PubMed DOI
Ogawa A., Ando F., Toyofuku K., Kawashima C. (2009). Sucrose metabolism for the development of seminal root in maize seedlings. Plant Prod. Sci. 12, 9–16. doi: 10.1626/pps.12.9 DOI
Paul M. J., Primavesi L. F., Jhurreea D., Zhang Y. (2008). Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 59, 417–441. doi: 10.1146/annurev.arplant.59.032607.092945 PubMed DOI
Perotto S., Rodda M., Benetti A., Sillo F., Ercole E., Rodda M., et al. . (2014). Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship. Planta 239, 1337–1349. doi: 10.1007/s00425-014-2062-x, PMID: PubMed DOI
Peterson R. L., Uetake Y., Zelmer C. (1998). Fungal symbioses with orchid protocorms. Symbiosis 25, 29–55.
Ponert J., Figura T., Vosolsobě S., Lipavská H., Vohník M., Jersáková J. (2013). Asymbiotic germination of mature seeds and protocorm development of Pseudorchis albida (Orchidaceae) are inhibited by nitrates even at extremely low concentrations. Botany 91, 662–670. doi: 10.1139/cjb-2013-0082 DOI
Ponert J., Lipavská H. (2017). Utilization of exogenous saccharides by protocorms of two terrestrial orchids. Plant Soil Environ. 63, 152–158. doi: 10.17221/71/2017-PSE DOI
Purves S., Hadley G. (1976). The physiology of Symbiosis in Goodyera repens. New Phytol. 77, 689–696. doi: 10.1007/978-3-642-64950-9 DOI
Ponnu J., Wahl V., Schmid M. (2011). Trehalose-6-phosphate: Connecting plant metabolism and development. Front. Plant Sci. 2:070. doi: 10.3389/fpls.2011.00070 PubMed DOI PMC
Quednow K. G. (1930). Beiträge zur Frage der Aufnahme gelöster Kohlenstoffverbindungen durch Orchideen und andere Pflanzen. Bot. Arch. 30, 51–108.
R Core Team (2019). R: A Language and Environment for Statistical Computing. Available at: https://stat.ethz.ch/pipermail/r-help/2014-October/422975.html (Accessed May 15, 2020).
Rahman A. R. M. M., Islam M. O., Prodhan A. K. M. A., Ichihashi S. (2005). Effects of carbohydrates on callus growth and callus derived plantlet regeneration in Doritaenopsis orchid. Biotechnology 4, 126–131. doi: 10.3923/biotech.2005.126.131 DOI
Rasmussen H. N. (1990). Cell differentiation and mycorrhizal infection in Dactylorhiza majalis (Rchb. F.) Hunt & Summerh. (Orchidaceae) during germination in vitro. New Phytol. 116, 137–147. doi: 10.1111/j.1469-8137.1990.tb00519.x DOI
Rasmussen H. N. (1995). Terrestrial Orchids: From Seed to Mycotrophic Plant. Cambridge: Cambridge University Press.
Rasmussen H. N., Dixon K. W., Jersáková J., Těšitelová T. (2015). Germination and seedling establishment in orchids: a complex of requirements. Ann. Bot. 116, 391–402. doi: 10.1093/aob/mcv087, PMID: PubMed DOI PMC
Rasmussen H. N., Rasmussen F. N. (2009). Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118, 334–345. doi: 10.1111/j.1600-0706.2008.17116.x DOI
Sayago J. E., Ordóñez R. M., Isla M. I. (2008). Acid invertase localization in leaves of the fern Pteris deflexa link. Eur. J. Histochem. 52, 255–262. doi: 10.4081/1225, PMID: PubMed DOI
Schiebold J. M. I., Bidartondo M. I., Lenhard F., Makiola A., Gebauer G. (2017). Exploiting mycorrhizas in broad daylight: partial mycoheterotrophy is a common nutritional strategy in meadow orchids. J. Ecol. 106, 168–178. doi: 10.1111/1365-2745.12831 DOI
Schluepmann H., Dijken A., Aghdasi M., Wobbes B., Paul M. (2004). Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol. 135, 879–890. doi:10.1104/pp.104.039503, PMID: . PubMed DOI PMC
Schweiger J. M. I., Bidartondo M. I., Gebauer G. (2018). Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Funct. Ecol. 32, 870–881. doi: 10.1111/1365-2435.13042 DOI
Selosse M.-A. (2014). The latest news from biological interactions in orchids: in love, head to toe. New Phytol. 202, 337–340. doi: 10.1111/nph.12769, PMID: PubMed DOI
Selosse M. A., Bocayuva M. F., Kasuya M. C. M., Courty P. E. (2016). “Mixotrophy in mycorrhizal plants: extracting carbon from mycorrhizal networks,” in Molecular Mycorrhizal Symbiosis. ed. Martin F. (New Jersey: Wiley Blackwell; ), 451–471.
Selosse M. A., Boullard B., Richardson D. (2011). Noël Bernard (1874-1911): orchids to symbiosis in a dozen years, one century ago. Symbiosis 54, 61–68. doi: 10.1007/s13199-011-0131-5 DOI
Shachar-Hill Y., Pfeffer P. E., Douds D., Osman S. F., Doner L. W., Ratcliffe R. G. (1995). Partitioning of intermediary carbon metabolism in vesicular-Arbuscular Mycorrhizal Leek. Plant Physiol. 108, 7–15. doi: 10.1104/pp.108.1.7, PMID: PubMed DOI PMC
Smith S. E. (1967). Carbohydrate translocation in orchid Mycorrhizas. New Phytol. 66, 371–378. doi: 10.1111/j.1469-8137.1967.tb06016.x DOI
Smith S. E. (1973). Asymbiotic germination of orchid seeds on carbohydrates of fungal origin. New Phytol. 72, 497–499. doi: 10.1111/j.1469-8137.1973.tb04400.x DOI
Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. 3rd Edn. New York: Academic Press.
Smith S. E., Smith F. A. (1990). Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol. 114, 1–38. doi: 10.1111/j.1469-8137.1990.tb00370.x, PMID: PubMed DOI
Söderström B., Finlay R. D., Read D. J. (1988). The structure and function of the vegetative mycelium of ectomycorrhizal plants IV. Qualitative analysis of carbohydrate contents of mycelium interconnecting host plants. New Phytol. 109, 163–166. doi: 10.1111/j.1469-8137.1988.tb03704.x PubMed DOI
Sopalun K., Thammasiri K., Ishikawa K. (2010). Micropropagation of the Thai orchid Grammatophyllum speciosum blume. Plant Cell Tissue Organ Cult. 101, 143–150. doi: 10.1007/s11240-010-9671-2 DOI
Steinbachová-Vojtíšková L., Tylová E., Soukup A., Novická H., Votrubová O., Lipavská H., et al. . (2006). Influence of nutrient supply on growth, carbohydrate, and nitrogen metabolic relations in Typha angustifolia. Environ. Exp. Bot. 57, 246–257. doi: 10.1016/j.envexpbot.2005.06.003 DOI
Stewart S. L., Kane M. E. (2010). Effects of carbohydrate source on the in vitro asymbiotic seed germination of the terrestrial orchid Habenaria macroceratitis. J. Plant Nutr. 33, 1155–1165. doi: 10.1080/01904161003763757 DOI
Stribley D. P., Read D. J. (1974). The biology of mycorrhiza in the Ericaceae III. Movement of carbon from host to fungus. New Phytol. 73, 731–741. doi: 10.1111/j.1469-8137.1974.tb01301.x DOI
Suetsugu K., Matsubayashi J. (2021). Evidence for mycorrhizal cheating in Apostasia nipponica, an early-diverging member of the Orchidaceae. New Phytol. 229, 2302–2310. doi: 10.1111/nph.17049, PMID: PubMed DOI
Suetsugu K., Yamato M., Miura C., Yamaguchi K., Takahashi K., Ida Y., et al. . (2017). Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Mol. Ecol. 26, 1652–1669. doi: 10.1111/mec.14021, PMID: PubMed DOI
Talbot N. J. (2010). Living the sweet life: how does a plant pathogenic fungus acquire sugar from plants? PLoS Biol. 8, e1000308–e1000304. doi: 10.1371/journal.pbio.1000308, PMID: PubMed DOI PMC
Taylor D., Bruns T., Leake J., Read D. (2003). “Mycorrhizal specificity and function in myco-heterotrophic plants,” in Mycorrhizal Ecology. eds. Heijden M., Sanders I. (Berlin: Springer-Verlag; ), 375–413. doi: 10.1007/978-3-540-38364-2 DOI
Tĕšitel J., Těšitelová T., Minasiewicz J., Selosse M. A. (2018). Mixotrophy in land plants: why to stay green? Trends Plant Sci. 23, 656–659. doi: 10.1016/j.tplants.2018.05.010, PMID: PubMed DOI
Tibbett M., Sanders F. E., Cairney J. W. G. (2002). Low-temperature-induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza 12, 249–255. doi: 10.1007/s00572-002-0183-8, PMID: PubMed DOI
Trudell S., Rygiewicz P. T., Edmonds R. L. (2003). Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytol. 160, 391–401. doi: 10.1046/j.1469-8137.2003.00876.x, PMID: PubMed DOI
Tsai A. Y. L., Gazzarrini S. (2014). Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: The emerging picture. Front. Plant Sci. 5:119. doi: 10.3389/fpls.2014.00119, PMID: PubMed DOI PMC
Valadares R. B. S., Marroni F., Sillo F., Oliveira R. R. M., Balestrini R., Perotto S. (2021). A transcriptomic approach provides insights on the mycorrhizal symbiosis of the mediterranean orchid Limodorum abortivum in nature. Plan. Theory 10:251. doi: 10.3390/plants10020251, PMID: PubMed DOI PMC
Valadares R. B. S., Perotto S., Santos E. C., Lambais M. R., Paper O. (2014). Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza 24, 349–360. doi: 10.1007/s00572-013-0547-2, PMID: PubMed DOI
van der Heijden M. G. A., Martin F. M., Selosse M. A., Sanders I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406–1423. doi: 10.1111/nph.13288, PMID: PubMed DOI
Van Waes J. (1984). In vitro studie van de kiemingsfysiologie van Westeuropese orchideeën. Thesis.Ghent, Belgium: Rijksuniversiteit Gent.
Veluthambi K., Mahadevan S., Maheshwari R. (1982). Trehalose toxicity in Cuscuta reflexa. Plant Physiol. 69, 1247–1251. doi: 10.1104/pp.70.3.686, PMID: PubMed DOI PMC
Vojtíšková L., Munzarová E., Votrubová O., Čížková H., Lipavská H. (2006). The influence of nitrogen nutrition on the carbohydrate and nitrogen status of emergent macrophyte Acorus calamus L. Hydrobiologia 563, 73–85. doi: 10.1007/s10750-005-0929-3 DOI
WCSP (2020). World Checklist of Selected Plant Families: Royal Botanic Gardens, Kew. Available at: http://wcsp.science.kew.org (Accessed May 6, 2020).
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNAa genes for Phylogenetics,” in PCR Protocols: A Guide to Methods and Applications, eds. Innis M., Gelfand D., Sinsky J., White T. (San Diego: Academic Press; ), 315–322.
Wiemken V. (2007). Trehalose synthesis in ectomycorrhizas - a driving force of carbon gain for fungi? New Phytol. 174, 228–230. doi: 10.1111/j.1469-8137.2007.02049.x, PMID: PubMed DOI
Wilcoxon F. (1945). Individual comparisons by ranking methods. Biom. Bull. 1, 80–83. doi: 10.2307/3001968 DOI
Wingler A., Fritzius T., Wiemken A., Boller T., Aeschbacher R. A. (2000). Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol. 124, 105–114. doi: 10.1104/pp.124.1.105, PMID: PubMed DOI PMC
Wittich P. E., Vreugdenhil D. (1998). Localization of sucrose synthase activity in developing maize kernels by in situ enzyme histochemistry. J. Exp. Bot. 49, 1163–1171. doi: 10.1093/jxb/49.324.1163 DOI
Wotavová-Novotná K., Vejsadová H., Kindlmann P. (2007). Effects of sugars and growth regulators on in vitro growth of Dactylorhiza species. Biol. Plant. 51, 198–200. doi: 10.1007/s10535-007-0040-x DOI
Wynd F. L. (1933). Sources of carbohydrate for germination and growth of orchid seedlings. Ann. Missouri Bot. Gard. 20:569. doi: 10.2307/2394196 DOI
Yoder J. A., Zettler L. W., Stewart S. L. (2000). Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci. 156, 145–150. doi: 10.1016/S0168-9452(00)00246-6, PMID: PubMed DOI