Tritium hydrogen-isotope exchange with electron-poor tertiary benzenesulfonamide moiety; application in late-stage labeling of T0901317
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
34957593
DOI
10.1002/jlcr.3958
Knihovny.cz E-zdroje
- Klíčová slova
- D2 vs. T2 reactivity, T0901317, catalyst, hydrogen isotope exchange, iridium, late-stage-labeling, tertiary benzenesulfonamides, tetrafluoroethylsulfonamides,
- MeSH
- benzensulfonamidy MeSH
- elektrony * MeSH
- fluorokarbony MeSH
- izotopy MeSH
- katalýza MeSH
- sulfonamidy MeSH
- tritium chemie MeSH
- vodík * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fluorokarbony MeSH
- izotopy MeSH
- sulfonamidy MeSH
- T0901317 MeSH Prohlížeč
- tritium MeSH
- vodík * MeSH
The multifunctional radioligand [3 H]T0901317 ([3 H]1) has been employed as a powerful autoradiographic tool to target several receptors, such as liver X, farnesoid X, and retinoic acid-related orphan receptor alpha and gamma subtypes at nanomolar concentrations. Although [3 H]1 is commercially available and its synthesis via tritiodebromination has been reported, the market price of this radioligand and the laborious synthesis of corresponding bromo-intermediate potentially preclude its widespread use in biochemical, pharmacological, and pathological studies in research lab settings. We exploit recent reports on hydrogen-isotope exchange (HIE) reactions in tertiary benzenesulfonamides where the sulfonamide represents an ortho-directing group that facilitates CH activation in the presence of homogenous iridium(I) catalysts. Herein, we report a time- and cost-efficient method for the tritium late-stage labeling of compound 1-a remarkably electron-poor substrate owing to the tertiary trifluoroethylsulfonamide moiety. Under a straightforward HIE condition using a commercially available Kerr-type NHC Ir(I) complex, [(cod)Ir (NHC)Cl], the reaction with 1 afforded a specific activity of 10.8 Ci/mmol. Additionally, alternative HIE conditions using the heterogeneous catalyst of Ir-black provided sufficient 0.72 D-enrichment of 1 but unexpectedly failed while repeating with tritium gas.
Department of Chemistry University of Washington Seattle Washington USA
Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Atzrodt J, Derdau V, Kerr WJ, Reid M. C−H functionalisation for hydrogen isotope exchange. Angew Chem Int Ed. 2018;57(12):3022-3047.
Hesk D. Highlights of C (sp2)-H hydrogen isotope exchange reactions. J Label Compd Radiopharm. 2020;63(6):247-265.
Valero M, Derdau V. Highlights of aliphatic C (sp3)-H hydrogen isotope exchange reactions. J Label Compd Radiopharm. 2020;63(6):266-280.
Burhop A, Prohaska R, Weck R, Atzrodt J, Derdau V. Burgess iridium(I)-catalyst for selective hydrogen isotope exchange. J Label Compd Radiopharm. 2017;60(7):343-348.
Cross PWC, Herbert JM, Kerr WJ, McNeill AH, Paterson LC. Isotopic labelling of functionalised arenes catalysed by iridium(I) species of the [(cod)Ir (NHC)(py)]PF6 complex class. Synlett. 2016;27(01):111-115.
Cochrane AR, Irvine S, Kerr WJ, Reid M, Andersson S, Nilsson GN. Application of neutral iridium(I) N-heterocyclic carbene complexes in ortho-directed hydrogen isotope exchange. J Label Compd Radiopharm. 2013;56(9-10):451-454.
Kerr WJ, Reid M, Tuttle T. Iridium-catalyzed C-H activation and deuteration of primary sulfonamides: an experimental and computational study. ACS Catalysis. 2015;5(1):402-410.
Burhop A, Weck R, Atzrodt J, Derdau V. Hydrogen-isotope exchange (HIE) reactions of secondary and tertiary sulfonamides and sulfonylureas with iridium(I) catalysts. Eur J Org Chem. 2017;2017(11):1418-1424.
Valero M, Burhop A, Jess K, et al. Evaluation of a P,N-ligated iridium(I) catalyst in hydrogen isotope exchange reactions of aryl and heteroaryl compounds. J Label Compd Radiopharm. 2018;61(4):380-385.
Atzrodt J, Derdau V, Kerr WJ, Reid M, Rojahn P, Weck R. Expanded applicability of iridium(I) NHC/phosphine catalysts in hydrogen isotope exchange processes with pharmaceutically-relevant heterocycles. Tetrahedron. 2015;71(13):1924-1929.
Kerr WJ, Knox GJ, Paterson LC. Recent advances in iridium(I) catalysis towards directed hydrogen isotope exchange. J Label Compd Radiopharm. 2020;63(6):281-295.
Repa JJ, Turley SD, Lobaccaro J-MA, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000;289(5484):1524-1529.
Houck KA, Borchert KM, Hepler CD, et al. T0901317 is a dual LXR/FXR agonist. Mol Genet Metab. 2004;83(1):184-187.
Kumar N, Solt LA, Conkright JJ, et al. The benzenesulfoamide T0901317 [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-α/γ inverse agonist. Mol Pharmacol. 2010;77(2):228-236.
Patouret R, Doebelin C, Garcia-Ordonez RD, et al. Identification of an aminothiazole series of RORβ modulators. Bioorg Med Chem Lett. 2018;28(7):1178-1181.
Mitro N, Vargas L, Romeo R, Koder A, Saez E. T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR. FEBS Lett. 2007;581(9):1721-1726.
Seneviratne U, Huang Z, am Ende CW, et al. Photoaffinity labeling and quantitative chemical proteomics identify LXRβ as the functional target of enhancers of astrocytic apoE. Cell Chem Biol. 2021;28(2):148-157.
Fauber BP, Johnson AR, Bowerman S, et al. Syntheses of [3H2]T0901317 and a labeled structural isomer, and characterization of the dispersed labeled compounds via 19F NMR. J Label Compd Radiopharm. 2014;57(1):57-60.
Voges R, Heys JR, Moenius T. Preparation of Compounds Labeled with Tritium and Carbon-14. John Wiley & Sons; 2009.
Vliegen M, Haspeslagh P, Verluyten W. Alternative efficient tritium labeling of repaglinide. J Label Compd Radiopharm. 2012;55(4):155-157.
Atzrodt J, Derdau V, Fey T, Zimmermann J. The renaissance of H/D exchange. Angew Chem Int Ed. 2007;46(41):7744-7765.
Atzrodt J, Derdau V. Pd- and Pt-catalyzed H/D exchange methods and their application for internal MS standard preparation from a Sanofi-Aventis perspective. J Label Compd Radiopharm. 2010;53(11-12):674-685.
Nilsson GN, Kerr W. The development and use of novel iridium complexes as catalysts for ortho-directed hydrogen isotope exchange reactions. J Label Compd Radiopharm. 2010;53(11-12):662-667.
Hickey MJ, Jones JR, Kingstona LP, et al. Iridium-catalysed labelling of anilines, benzylamines and nitrogen heterocycles using deuterium gas and cycloocta-1,5-dienyliridium(I) 1,1,1,5,5,5-hexafluoropentane-2,4-dionate. Tetrahedron Lett. 2003;44(20):3959-3961.
McAuley B, Hickey MJ, Kingston LP, et al. Convenient and efficient deuteration of functionalized aromatics with deuterium oxide: catalysis by cycloocta-1,5-dienyliridium(I) 1,3-dionates. J Label Compd Radiopharm. 2003;46(13):1191-1204.
Perozzi EF, Michalak RS, Figuly GD, et al. Directed dilithiation of hexafluorocumyl alcohol-formation of a reagent for the facile introduction of a stabilizing bidentate ligand in compounds of hypervalent sulfur (10-S-4), phosphorus (10-P-5), silicon (10-Si-5), and iodine (10-I-3). J Org Chem. 1981;46(6):1049-1053.