• This record comes from PubMed

Complement Activation Dramatically Accelerates Blood Plasma Fouling On Antifouling Poly(2-hydroxyethyl methacrylate) Brush Surfaces

. 2022 Mar ; 22 (3) : e2100460. [epub] 20220105

Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Non-specific protein adsorption (fouling) triggers a number of deleterious events in the application of biomaterials. Antifouling polymer brushes successfully suppress fouling, however for some coatings an extremely high variability of fouling for different donors remains unexplained. The authors report that in the case of poly(2-hydroxyethyl methacrylate) (poly(HEMA)) this variability is due to the complement system activation that causes massive acceleration in the fouling kinetics of blood plasma. Using plasma from various donors, the fouling kinetics on poly(HEMA) is analyzed and correlated with proteins identified in the deposits on the surface and with the biochemical compositions of the plasma. The presence of complement components in fouling deposits and concentrations of C3a in different plasmas indicate that the alternative complement pathway plays a significant role in the fouling on poly(HEMA) through the "tick-over" mechanism of spontaneous C3 activation. The generated C3b binds to the poly(HEMA) surface and amplifies complement activation locally. Heat-inactivated plasma prevents accelerated fouling kinetics, confirming the central role of complement activation. The results highlight the need to take into account the variability between individuals when assessing interactions between biomaterials and blood plasma, as well as the importance of the mechanistic insight that can be gained from protein identification.

See more in PubMed

Q. Wei, T. Becherer, S. Angioletti-Uberti, J. Dzubiella, C. Wischke, A. T. Neffe, A. Lendlein, M. Ballauff, R. Haag, Angew. Chem., Int. Ed. 2014, 53, 8004.

F. Jung, S. Braune, Biointerphases 2015, 11, 029601.

L. Vroman, A. L. Adams, G. C. Fischer, P. C. Munoz, Blood 1980, 55, 156.

B. Sivaraman, R. A. Latour, Langmuir 2012, 28, 2745.

Q. Yu, Y. Zhang, H. Wang, J. Brash, H. Chen, Acta Biomater. 2011, 7, 1550.

N.-P. Huang, R. Michel, J. Vörös, M. Textor, R. Hofer, A. Rossi, D. L. Elbert, J. A. Hubbell, N. D. Spencer, Langmuir 2001, 17, 489.

A. Halperin, Langmuir 1999, 15, 2525.

M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, J. E. Gautrot, Chem. Rev. 2014, 114, 10976.

D. Lee, S. Cho, H. S. Park, I. Kwon, Sci. Rep. 2016, 6, 34194.

M. Zare, A. Bigham, M. Zare, H. Luo, E. Rezvani Ghomi, S. Ramakrishna, Int. J. Mol. Sci. 2021, 22, 6376.

P. Kanyong, C. Catli, J. J. Davis, Anal. Chem. 2020, 92, 4707.

T. L. Tsou, S. T. Tang, Y. C. Huang, J. R. Wu, J. J. Young, H. J. Wang, J. Mater. Sci.: Mater. Med. 2005, 16, 95.

H. Chen, C. Zhao, M. Zhang, Q. Chen, J. Ma, J. Zheng, Langmuir 2016, 32, 3315.

O. Pop-Georgievski, C. Rodriguez-Emmenegger, A. de los Santos Pereira, V. Proks, E. Brynda, F. Rypacek, J. Mater. Chem. B 2013, 1, 2859.

A. de los Santos Pereira, C. Rodriguez-Emmenegger, F. Surman, T. Riedel, A. B. Alles, E. Brynda, RSC Adv. 2014, 4, 2318.

S. Schottler, K. Landfester, V. Mailander, Angew. Chem., Int. Ed. 2016, 55, 8806.

T. Riedel, Z. Riedelová-Reicheltová, P. Májek, C. Rodriguez-Emmenegger, M. Houska, J. E. Dyr, E. Brynda, Langmuir 2013, 29, 3388.

G. Gunkel, W. T. Huck, J. Am. Chem. Soc. 2013, 135, 7047.

S. Schottler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailander, F. R. Wurm, Nat. Nanotechnol. 2016, 11, 372.

E. Allemann, P. Gravel, J. C. Leroux, L. Balant, R. Gurny, J. Biomed. Mater. Res. 1997, 37, 229.

J. R. Dunkelberger, W. C. Song, Cell Res. 2010, 20, 34.

M. Kenneth, P. Travers, M. Walport, in Janeway's Immunobiology, Garland Science, New York 2011, pp. 37-73.

J. Janatova, A. K. Cheung, C. J. Parker, Complement Inflammation 1991, 8, 61.

F. Chen, G. Wang, J. I. Griffin, B. Brenneman, N. K. Banda, V. M. Holers, D. S. Backos, L. Wu, S. M. Moghimi, D. Simberg, Nat. Nanotechnol. 2017, 12, 387.

V. P. Vu, G. B. Gifford, F. Chen, H. Benasutti, G. Wang, E. V. Groman, R. Scheinman, L. Saba, S. M. Moghimi, D. Simberg, Nat. Nanotechnol. 2019, 14, 260.

J. Andersson, K. N. Ekdahl, J. D. Lambris, B. Nilsson, Biomaterials 2005, 26, 1477.

H. Benasutti, G. Wang, V. P. Vu, R. Scheinman, E. Groman, L. Saba, D. Simberg, Bioconjugate Chem. 2017, 28, 2747.

Y. Li, G. Wang, L. Griffin, N. K. Banda, L. M. Saba, E. V. Groman, R. Scheinman, S. M. Moghimi, D. Simberg, J. Controlled Release 2021, 338, 548.

M. K. Pangburn, H. J. Muller-Eberhard, Ann. N. Y. Acad. Sci. 1983, 421, 291.

C. Rodriguez-Emmenegger, E. Brynda, T. Riedel, Z. Sedlakova, M. Houska, A. Bologna Alles, Langmuir 2009, 25, 6328.

R. M. Cornelius, J. Macri, K. M. Cornelius, J. L. Brash, Biointerphases 2016, 11, 029810.

R. M. Cornelius, J. Macri, K. M. Cornelius, J. L. Brash, Langmuir 2015, 31, 12087.

C. Rodriguez-Emmenegger, M. Houska, A. B. Alles, E. Brynda, Macromol. Biosci. 2012, 12, 1413.

J. Mares, P. Richtrova, A. Hricinova, Z. Tuma, J. Moravec, D. Lysak, M. Matejovic, Proteomics: Clin. Appl. 2010, 4, 829.

F. Poppelaars, B. Faria, M. Gaya da Costa, C. F. M. Franssen, W. J. van Son, S. P. Berger, M. R. Daha, M. A. Seelen, Front. Immunol. 2018, 9, 71.

J. Simon, J. Muller, A. Ghazaryan, S. Morsbach, V. Mailander, K. Landfester, Nanoscale 2018, 10, 21096.

R. M. Cornelius, J. L. Brash, J. Biomater. Sci., Polym. Ed. 1993, 4, 291.

R. M. Cornelius, J. Macri, J. L. Brash, J. Biomed. Mater. Res., Part A 2011, 99A, 109.

D. M. Jones, A. A. Brown, W. T. S. Huck, Langmuir 2002, 18, 1265.

C. Rodriguez-Emmenegger, O. A. Avramenko, E. Brynda, J. Skvor, A. B. Alles, Biosens. Bioelectron. 2011, 26, 4545.

P. Majek, Z. Reicheltova, J. Stikarova, J. Suttnar, A. Sobotkova, J. E. Dyr, Proteome Sci. 2010, 8, 56.

T. Riedel, P. Májek, Z. Riedelová-Reicheltová, M. Vorobii, M. Houska, C. Rodriguez-Emmenegger, Anal. Methods 2016, 8, 6415.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...