Heterocyclic Cathinones as Inhibitors of Kynurenine Aminotransferase II-Design, Synthesis, and Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-SVV/2018
Ministry of Education Youth and Sports
LM2018130
Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_025/0007444
ERDF/ESF
PubMed
34959692
PubMed Central
PMC8708382
DOI
10.3390/ph14121291
PII: ph14121291
Knihovny.cz E-zdroje
- Klíčová slova
- KAT-II, drug design, enzyme assay, heterocyclic cathinones, inhibitor,
- Publikační typ
- časopisecké články MeSH
Kynurenic acid is a neuroprotective metabolite of tryptophan formed by kynurenine aminotransferase (KAT) catalyzed transformation of kynurenine. However, its high brain levels are associated with cognitive deficit and with the pathophysiology of schizophrenia. Although several classes of KAT inhibitors have been published, the search for new inhibitor chemotypes is crucial for the process of finding suitable clinical candidates. Therefore, we used pharmacophore modeling and molecular docking, which predicted derivatives of heterocyclic amino ketones as new potential irreversible inhibitors of kynurenine aminotransferase II. Thiazole and triazole-based amino ketones were synthesized within a SAR study and their inhibitory activities were evaluated in vitro. The observed activities confirmed our computational model and, moreover, the best compounds showed sub-micromolar inhibitory activity with 2-alaninoyl-5-(4-fluorophenyl)thiazole having IC50 = 0.097 µM.
Zobrazit více v PubMed
Foster A.C., Vezzani A., French E.D., Schwarcz R. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 1984;48:273–278. doi: 10.1016/0304-3940(84)90050-8. PubMed DOI
Winn P., Stone T.W., Latimer M., Hastings M.H., Clark A.J.M. A comparison of excitotoxic lesions of the basal forebrain by kainate, quinolinate, ibotenate, N-methyl-d-aspartate or quisqualate, and the effects on toxicity of 2-amino-5-phosphonovaleric acid and kynurenic acid in the rat. Br. J. Pharmacol. 1991;102:904–908. doi: 10.1111/j.1476-5381.1991.tb12274.x. PubMed DOI PMC
Schwarcz R., Bruno J.P., Muchowski P.J., Wu H.-Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci. 2012;13:465–477. doi: 10.1038/nrn3257. PubMed DOI PMC
Modoux M., Rolhion N., Mani S., Sokol H. Tryptophan Metabolism as a Pharmacological Target. Trends Pharmacol. Sci. 2021;42:60–73. doi: 10.1016/j.tips.2020.11.006. PubMed DOI
Stone J.M., Morrison P.D., Pilowsky L.S. Review: Glutamate and dopamine dysregulation in schizophrenia—A synthesis and selective review. J. Psychopharmacol. 2007;21:440–452. doi: 10.1177/0269881106073126. PubMed DOI
Plitman E., Iwata Y., Caravaggio F., Nakajima S., Chung J.K., Gerretsen P., Kim J., Takeuchi H., Chakravarty M.M., Remington G., et al. Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-analysis. Schizophr. Bull. 2017;43:764–777. doi: 10.1093/schbul/sbw221. PubMed DOI PMC
Erhardt S., Blennow K., Nordin C., Skogh E., Lindström L.H., Engberg G. Kynurenic acid levels ae elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci. Lett. 2001;313:96–98. doi: 10.1016/S0304-3940(01)02242-X. PubMed DOI
Schwarcz R., Rassoulpour A., Wu H.Q., Medoff D., Tamminga C.A., Roberts R.C. Increased cortical kynurenate content in schizophrenia. Biol. Psychiatry. 2001;50:521–530. doi: 10.1016/S0006-3223(01)01078-2. PubMed DOI
Pocivavsek A., Elmer G.I., Schwarcz R. Inhibition of kynurenine aminotransferase II attenuates hippocampus-dependent memory deficit in adult rats treated prenatally with kynurenine. Hippocampus. 2019;29:73–77. doi: 10.1002/hipo.23040. PubMed DOI PMC
Tutakhail A., Boulet L., Khabil S., Nazari Q.A., Hamid H., Coudoré F. Neuropathology of Kynurenine Pathway of Tryptophan Metabolism. Curr. Pharmacol. Rep. 2020;6:8–23. doi: 10.1007/s40495-019-00208-2. DOI
Kindler J., Lim C.K., Weickert C.S., Boerrigter D., Galletly C., Liu D., Jacobs K.R., Balzan R., Bruggemann J., O’Donnell M., et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol. Psychiatry. 2020;25:2860–2872. doi: 10.1038/s41380-019-0401-9. PubMed DOI PMC
Badawy A.A.-B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017;10:1–20. doi: 10.1177/1178646917691938. PubMed DOI PMC
Pocivavsek A., Notarangelo F.M., Wu H.-Q., Bruno J.P., Schwarcz R. Astrocytes as Pharmacological Targets in the Treatment of Schizophrenia: Focus on Kynurenic Acid. In: Pletnikov M.V., Waddington J.L., editors. Modeling the Psychopathological Dimensions of Schizophrenia. Volume 23. Elsevier; Amsterdam, The Netherlands: 2016. pp. 423–443. Handbook of Behavioral Neuroscience.
Fukuwatari T. Possibility of Amino Acid Treatment to Prevent the Psychiatric Disorders via Modulation of the Production of Tryptophan Metabolite Kynurenic Acid. Nutrients. 2020;12:1403. doi: 10.3390/nu12051403. PubMed DOI PMC
Potter M.C., Elmer G.I., Bergeron R., Albuquerque E.X., Guidetti P., Wu H.-Q., Schwarcz R. Reduction of Endogenous Kynurenic Acid Formation Enhances Extracellular Glutamate, Hippocampal Plasticity, and Cognitive Behavior. Neuropsychopharmacology. 2010;35:1734–1742. doi: 10.1038/npp.2010.39. PubMed DOI PMC
Rossi F., Valentina C., Garavaglia S., Sathyasaikumar K.V., Schwarcz R., Kojima S.-I., Okuwaki K., Ono S.-I., Kajii Y., Rizzi M. Crystal structure-based selective targeting of the pyridoxal 5’-phosphate dependent enzyme kynurenine aminotransferase II for cognitive enhancement. J. Med. Chem. 2010;53:5684–5689. doi: 10.1021/jm100464k. PubMed DOI PMC
Pellicciari R., Venturoni F., Bellocchi D., Carotti A., Marinozzi M., Macchiarulo A., Amori L., Schwarcz R. Sequence Variants in Kynurenine Aminotransferase II (KAT II) Orthologs Determine Different Potencies of the Inhibitor S-ESBA. ChemMedChem. 2008;3:1199–1202. doi: 10.1002/cmdc.200800109. PubMed DOI
Pellicciari R., Rizzo R.C., Costantino G., Marinozzi M., Amori L., Guidetti P., Wu H.-Q., Schwarcz R. Modulators of the Kynurenine Pathway of Tryptophan Metabolism: Synthesis and Preliminary Biological Evaluation of (S)-4-(Ethylsulfonyl)benzoylalanine, a Potent and Selective Kynurenine Aminotransferase II (KAT II) Inhibitor. ChemMedChem. 2006;1:528–531. doi: 10.1002/cmdc.200500095. PubMed DOI
Dounay A.B., Anderson M., Bechle B.M., Campbell B.M., Claffey M.M., Evdokimov A., Evrard E., Fonseca K.R., Gan X., Ghosh S., et al. Discovery of Brain-Penetrant, Irreversible Kynurenine Aminotransferase II Inhibitors for Schizophrenia. ACS Med. Chem. Lett. 2012;3:187–192. doi: 10.1021/ml200204m. PubMed DOI PMC
Imbeault S., Olivé M.G., Jungholm O., Erhardt S., Wigström H., Engberg G., Jardemark K. Blockade of KAT II Facilitates LTP in Kynurenine 3-Monooxygenase Depleted Mice. Int. J. Tryptophan Res. 2021;14:1–8. doi: 10.1177/11786469211041368. PubMed DOI PMC
Koshy Cherian A., Gritton H., Johnson D.E., Young D., Kozak R., Sarter M. A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology. 2014;82:41–48. doi: 10.1016/j.neuropharm.2014.03.004. PubMed DOI PMC
Linderholm K.R., Alm M.T., Larsson M.K., Olsson S.K., Goiny M., Hajos M., Erhardt S., Engberg G. Inhibition of kynurenine aminotransferase II reduces activity of midbrain dopamine neurons. Neuropharmacology. 2016;102:42–47. doi: 10.1016/j.neuropharm.2015.10.028. PubMed DOI
Herédi J., Cseh E.K., Berkó A.M., Veres G., Zádori D., Toldi J., Kis Z., Vécsei L., Ono E., Gellért L. Investigating KYNA production and kynurenergic manipulation on acute mouse brain slice preparations. Brain Res. Bull. 2019;146:185–191. doi: 10.1016/j.brainresbull.2018.12.014. PubMed DOI
Zakhary G., Sherchan P., Li Q., Tang J., Zhang J.H. Modification of kynurenine pathway via inhibition of kynurenine hydroxylase attenuates surgical brain injury complications in a male rat model. J. Neurosci. Res. 2020;98:155–167. doi: 10.1002/jnr.24489. PubMed DOI PMC
Yoshida T., Yamasaki S., Kaneko O., Taoka N., Tomimoto Y., Namatame I., Yahata T., Kuromitsu S., Cantley L.C., Lyssiotis C.A. A covalent small molecule inhibitor of glutamate-oxaloacetate transaminase 1 impairs pancreatic cancer growth. Biochem. Biophys. Res. Commun. 2020;522:633–638. doi: 10.1016/j.bbrc.2019.11.130. PubMed DOI PMC
Klausing A.D., Fukuwatari T., Bucci D.J., Schwarcz R. Stress-induced impairment in fear discrimination is causally related to increased kynurenic acid formation in the prefrontal cortex. Psychopharmacology. 2020;237:1931–1941. doi: 10.1007/s00213-020-05507-x. PubMed DOI PMC
Kozak R., Campbell B.M., Strick C.A., Horner W., Hoffmann W.E., Kiss T., Chapin D.S., McGinnis D., Abbott A.L., Roberts B.M., et al. Reduction of Brain Kynurenic Acid Improves Cognitive Function. J. Neurosci. 2014;34:10592–10602. doi: 10.1523/JNEUROSCI.1107-14.2014. PubMed DOI PMC
Henderson J.L., Sawant-Basak A., Tuttle J.B., Dounay A.B., McAllister L.A., Pandit J., Rong S., Hou X., Bechle B.M., Kim J.-Y., et al. Discovery of hydroxamate bioisosteres as KAT II inhibitors with improved oral bioavailability and pharmacokinetics. Med. Chem. Commun. 2013;4:125–129. doi: 10.1039/C2MD20166F. DOI
Tuttle J.B., Anderson M., Bechle B.M., Campbell B.M., Chang C., Dounay A.B., Evrard E., Fonseca K.R., Gan X., Ghosh S., et al. Structure-Based Design of Irreversible Human KAT II Inhibitors: Discovery of New Potency-Enhancing Interactions. ACS Med. Chem. Lett. 2013;4:37–40. doi: 10.1021/ml300237v. PubMed DOI PMC
Claffey M.M., Dounay A.B., Gan X., Hayward M.M., Rong S., Tuttle J.B., Verhoest P.R. Bicyclic and Tricyclic Compounds as KAT II Inhibitors. 2010/146488A1. WO Patent. 2010 December 23;
Dounay A.B., McAllister L.A., Parikh V.D., Rong S., Verhoest P.R. KAT II Inhibitors. 2012/073143A1. WO Patent. 2012 June 7;
Dounay A.B., Anderson M., Bechle B.M., Evrard E., Gan X., Kim J.-Y., McAllister L.A., Pandit J., Rong S., Salafia M.A., et al. PF-04859989 as a template for structure-based drug design: Identification of new pyrazole series of irreversible KAT II inhibitors with improved lipophilic efficiency. Bioorg. Med. Chem. Lett. 2013;23:1961–1966. doi: 10.1016/j.bmcl.2013.02.039. PubMed DOI
Dounay A.B., Tuttle J.B., Verhoest P.R. Preparation of Tricyclic Compounds as KAT II Inhibitors. 2013/186666A1. WO Patent. 2013 December 19;
Wu H.-Q., Okuyama M., Kajii Y., Pocivavsek A., Bruno J.P., Schwarcz R. Targeting Kynurenine Aminotransferase II in Psychiatric Diseases: Promising Effects of an Orally Active Enzyme Inhibitor. Schizophr. Bull. 2014;40:S152–S158. doi: 10.1093/schbul/sbt157. PubMed DOI PMC
Yoshida Y., Fujigaki H., Kato K., Yamazaki K., Fujigaki S., Kunisawa K., Yamamoto Y., Mouri A., Oda A., Nabeshima T., et al. Selective and competitive inhibition of kynurenine aminotransferase 2 by glycyrrhizic acid and its analogues. Sci. Rep. 2019;9:10243. doi: 10.1038/s41598-019-46666-y. PubMed DOI PMC
Jayawickrama G.S., Nematollahi A., Sun G., Church W.B. Improvement of kynurenine aminotransferase-II inhibitors guided by mimicking sulfate esters. PLoS ONE. 2018;13:e0196404. doi: 10.1371/journal.pone.0196404. PubMed DOI PMC
Okuyama M., Fukunaga K., Usui K., Hayashi N., Iijima D., Horiuchi H., Itagaki N. Novel Bicyclic or Tricyclic Heterocyclic Compounds and Their Pharmaceutical Compositions for Prophylactic and Therapeutic Treatment of KAT (Kynurenine Aminotransferase) II-Associated Disorders. 2015/163339A1. WO Patent. 2015 October 29;
Kalliokoski T., Rummakko P., Rantanen M., Blaesse M., Augustin M., Ummenthala G.R., Choudhary S., Venäläinen J. Discovery of sulfonamides and 9-oxo-2,8-diazaspiro[5,5]undecane-2-carboxamides as human kynurenine aminotransferase 2 (KAT2) inhibitors. Bioorganic Med. Chem. Lett. 2020;30:127060. doi: 10.1016/j.bmcl.2020.127060. PubMed DOI
Morwick T., Hrapchak M., DeTuri M., Campbell S. A practical approach to the synthesis of 2,4-disubstituted oxazoles from amino acids. Org. Lett. 2002;4:2665–2668. doi: 10.1021/ol020092s. PubMed DOI
Pirc S., Bevk D., Golobič A., Stanovnik B., Svete J. Transformation of amino acids into nonracemic 1-(heteroaryl)ethanamines by the enamino ketone methodology. Helv. Chim. Acta. 2006;89:30–44. doi: 10.1002/hlca.200690010. DOI
Liu J., Ikemoto N., Petrillo D., Armstrong J.D. Improved syntheses of α-BOC-aminoketones from α-BOC-amino-Weinreb amides using a pre-deprotonation protocol. Tetrahedron Lett. 2002;43:8223–8226. doi: 10.1016/S0040-4039(02)02031-2. DOI
Himo F., Lovell T., Hilgraf R., Rostovtsev V.V., Noodleman L., Sharpless K.B., Fokin V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005;127:210–216. doi: 10.1021/ja0471525. PubMed DOI
Andersen J., Madsen U., Björkling F., Liang X. Rapid Synthesis of Aryl Azides from Aryl Halides under Mild Conditions. Synlett. 2005:2209–2213. doi: 10.1002/chin.200602076. DOI
Berry M.T., Castrejon D., Hein J.E. Oxidative Esterification of Aldehydes Using Mesoionic 1,2,3-Triazolyl Carbene Organocatalysts. Org. Lett. 2014;16:3676–3679. doi: 10.1021/ol501458p. PubMed DOI
Ran R.Q., He J., Xiu S.D., Wang K.B., Li C.Y. Synthesis of 3-pyrrolin-2-ones by rhodium-catalyzed transannulation of 1-sulfonyl-1,2,3-triazole with ketene silyl acetal. Org. Lett. 2014;16:3704–3707. doi: 10.1021/ol501514b. PubMed DOI
Kitamura M., Kato S., Yano M., Tashiro N., Shiratake Y., Sando M., Okauchi T. A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. Org. Biomol. Chem. 2014;12:4397–4406. doi: 10.1039/c4ob00515e. PubMed DOI
Sharma D.K., Spencer T., Adams J., Liebmann K.L., Miller S.C. Rapid Access to a Broad Range of 6′-Substituted Firefly Luciferin Analogues Reveals Surprising Emitters and Inhibitors. Org. Lett. 2017;19:5836–5839. doi: 10.1021/acs.orglett.7b02806. PubMed DOI PMC
Tsuruoka A., Kaku Y., Kakinuma H., Tsukada I., Yanagisawa M., Nara K., Naito T. Synthesis and Antifungal Activity of Novel Thiazole-Containing Triazole Antifungals. II. Optically Active ER-30346 and Its Derivatives. Chem. Pharm. Bull. 1998;46:623–630. doi: 10.1248/cpb.46.623. PubMed DOI
Skácel J., Dračínský M., Janeba Z. Synthesis of Tetrasubstituted Thiophenes via Direct Metalation. J. Org. Chem. 2020;85:788–797. doi: 10.1021/acs.joc.9b02803. PubMed DOI
Molecular Operating Environment (MOE), 2019.01. Chemical Computing Group ULC; Montreal, QC, Canada: 2021.
Lu H., Kopcho L., Ghosh K., Witmer M., Parker M., Gupta S., Paul M., Krishnamurthy P., Laksmaiah B., Xie D., et al. Development of a RapidFire mass spectrometry assay and a fluorescence assay for the discovery of kynurenine aminotransferase II inhibitors to treat central nervous system disorders. Anal. Biochem. 2016;501:56–65. doi: 10.1016/j.ab.2016.02.003. PubMed DOI
García-Urricelqui A., de Cózar A., Mielgo A., Palomo C. Probing α-Amino Aldehydes as Weakly Acidic Pronucleophiles: Direct Access to Quaternary α-Amino Aldehydes by an Enantioselective Michael Addition Catalyzed by Brønsted Bases. Chem. – A Eur. J. 2021;27:2483–2492. doi: 10.1002/chem.202004468. PubMed DOI
Dai C., Stephenson C.R.J. Total Synthesis of Syringolin A. Org. Lett. 2010;12:3453–3455. doi: 10.1021/ol101252y. PubMed DOI
Du X., Zhang H.Y., Lei M., Li Z.Y., Zhu Y.Q. An Efficient Preparation of Novel Epoxyketone Intermediates for the Synthesis of Carfilzomib and Its Derivatives. J. Chem. Res. 2016;40:82–86. doi: 10.3184/174751916X14539789662063. DOI
Ripa L., Edman K., Dearman M., Edenro G., Hendrickx R., Ullah V., Chang H.-F., Lepistö M., Chapman D., Geschwindner S., et al. Discovery of a Novel Oral Glucocorticoid Receptor Modulator (AZD9567) with Improved Side Effect Profile. J. Med. Chem. 2018;61:1785–1799. doi: 10.1021/acs.jmedchem.7b01690. PubMed DOI
Audin P., Pothion C., Fehrentz J.-A., Loffet A., Martinez J., Paris J. Diastereoselective Synthesis of N-Protected β-Amino-α-Hydroxyacids (Norstatines) from Urethane N-Carboxyanhydrides (UNCAs) J. Chem. Res. Synopses. 1999;4:282–283. doi: 10.1039/a809421g. DOI
Gouault N., Le Roch M., Cornée C., David M., Uriac P. Synthesis of Substituted Pyrrolin-4-Ones from Amino Acids in Mild Conditions via a Gold-Catalyzed Approach. J. Org. Chem. 2009;74:5614–5617. doi: 10.1021/jo900693a. PubMed DOI
Jeong S., Kim E., Kim M., Hwang Y.J., Padhi B., Choi J., Lee Y., Joo J.M. Divergent Strategies for the π-Extension of Heteroaryl Halides Using Norbornadiene as an Acetylene Synthon. Org. Lett. 2020;22:9670–9676. doi: 10.1021/acs.orglett.0c03732. PubMed DOI
Steert K., Berg M., Mottram J.C., Westrop G.D., Coombs G.H., Cos P., Maes L., Joossens J., Van der Veken P., Haemers A., et al. α-Ketoheterocycles as Inhibitors of Leishmania Mexicana Cysteine Protease CPB. ChemMedChem. 2010;5:1734–1748. doi: 10.1002/cmdc.201000265. PubMed DOI PMC
Huang T., Wu X., Yu Y., An L., Yin X. A Convenient Synthesis of 2-Acyl Benzothiazoles/Thiazoles from Benzothiazole/Thiazole and N,N’-Carbonyldiimidazole Activated Carboxylic Acids. Tetrahedron Lett. 2019;60:1667–1670. doi: 10.1016/j.tetlet.2019.05.043. DOI