A Hybrid Lightweight System for Early Attack Detection in the IoMT Fog
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FRGS/1/2018/ICT04/UTM/01/1
Ministry of Higher Education
Vot 4L876
Ministry of Higher Education
PubMed
34960384
PubMed Central
PMC8708644
DOI
10.3390/s21248289
PII: s21248289
Knihovny.cz E-zdroje
- Klíčová slova
- HIDS, IoMT, IoT, NIDS, NetFlow data, fog computing, hybrid attack detection, incremental learning, machine learning, sensor’s data,
- MeSH
- Bayesova věta MeSH
- big data MeSH
- časná diagnóza MeSH
- internet věcí * MeSH
- Publikační typ
- časopisecké články MeSH
Cyber-attack detection via on-gadget embedded models and cloud systems are widely used for the Internet of Medical Things (IoMT). The former has a limited computation ability, whereas the latter has a long detection time. Fog-based attack detection is alternatively used to overcome these problems. However, the current fog-based systems cannot handle the ever-increasing IoMT's big data. Moreover, they are not lightweight and are designed for network attack detection only. In this work, a hybrid (for host and network) lightweight system is proposed for early attack detection in the IoMT fog. In an adaptive online setting, six different incremental classifiers were implemented, namely a novel Weighted Hoeffding Tree Ensemble (WHTE), Incremental K-Nearest Neighbors (IKNN), Incremental Naïve Bayes (INB), Hoeffding Tree Majority Class (HTMC), Hoeffding Tree Naïve Bayes (HTNB), and Hoeffding Tree Naïve Bayes Adaptive (HTNBA). The system was benchmarked with seven heterogeneous sensors and a NetFlow data infected with nine types of recent attack. The results showed that the proposed system worked well on the lightweight fog devices with ~100% accuracy, a low detection time, and a low memory usage of less than 6 MiB. The single-criteria comparative analysis showed that the WHTE ensemble was more accurate and was less sensitive to the concept drift.
Directorate of Information Technology Koya University Koya 44023 Iraq
Graduate School Hiroshima University Kagamiyama Higashihiroshima 739 8511 Japan
i SOMET Incorporated Association Morioka 020 0104 Japan
Institute of IR4 0 Universiti Kebangsaan Malaysia Bangi 43600 Malaysia
Media and Games Center of Excellence Universiti Teknologi Malaysia Skudai 81310 Malaysia
Regional Research Center Iwate Prefectural University Takizawa 020 0693 Japan
School of Computing Faculty of Engineering Universiti Teknologi Malaysia Skudai 81310 Malaysia
Zobrazit více v PubMed
Gatouillat A., Badr Y., Massot B., Sejdic E. Internet of Medical Things: A Review of Recent Contributions Dealing with Cyber-Physical Systems in Medicine. IEEE Internet Things J. 2018;5:3810–3822. doi: 10.1109/JIOT.2018.2849014. DOI
Pandey P., Litoriya R. Elderly care through unusual behavior detection: A disaster management approach using IoT and intelligence. IBM J. Res. Dev. 2020;64:15:1–15:11. doi: 10.1147/JRD.2019.2947018. DOI
Uddin M.A., Stranieri A., Gondal I., Balasubramanian V. Continuous Patient Monitoring with a Patient–Centric Agent: A Block Architecture. IEEE Access. 2018;6:32700–32726. doi: 10.1109/ACCESS.2018.2846779. DOI
Hameed S.S., Hassan W.H., Latiff L.A., Ghabban F. A systematic review of security and privacy issues in the internet of medical things; the role of machine learning approaches. PeerJ Comput. Sci. 2021;7:e414. doi: 10.7717/peerj-cs.414. PubMed DOI PMC
Nanayakkara N., Halgamuge M., Syed A. Security and Privacy of Internet of Medical Things (IoMT) Based Healthcare Applications: A Review; Proceedings of the International Conference on Advances in Business Management and Information Technology; Istanbul, Turkey. 11 June–11 July 2019.
Dang L.M., Piran M., Han D., Min K., Moon H. A survey on internet of things and cloud computing for healthcare. Electronics. 2019;8:768. doi: 10.3390/electronics8070768. DOI
Newaz A., Sikder A.K., Rahman M.A., Uluagac A.S. A Survey on Security and Privacy Issues in Modern Healthcare Systems: Attacks and Defenses. ACM Trans. Comput. Healthc. 2021;2:27. doi: 10.1145/3453176. DOI
Firouzi F., Rahmani A.M., Mankodiya K., Badaroglu M., Merrett G.V., Wong P., Farahani B. Internet-of-Things and big data for smarter healthcare: From device to architecture, applications and analytics. Future Gener. Comput. Syst. 2018;78:583–586. doi: 10.1016/j.future.2017.09.016. DOI
Rahmani A.M., Gia T.N., Negash B., Anzanpour A., Azimi I., Jiang M., Liljeberg P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018;78:641–658. doi: 10.1016/j.future.2017.02.014. DOI
Wei K., Zhang L., Guo Y., Jiang X. Health Monitoring Based on Internet of Medical Things: Architecture, Enabling Technologies, and Applications. IEEE Access. 2020;8:27468–27478. doi: 10.1109/ACCESS.2020.2971654. DOI
Gupta S., Venugopal V., Mahajan V., Gaur S., Barnwal M., Mahajan H. HIPAA, GDPR and Best Practice Guidelines for preserving data security and privacy-What Radiologists should know; Proceedings of the European Congress of Radiology-ECR 2020; Vienna, Austria. 26 February–1 March 2020; Poster Number C-13220.
Jaigirdar F.T., Rudolph C., Bain C. Can I Trust the Data I See? A Physician’s Concern on Medical Data in IoT Health Architectures; Proceedings of the Australasian Computer Science Week Multiconference; Sydney, Australia. 29–31 January 2019; pp. 1–10.
Goud N. Malware and Ransomware Attack on Medical Devices. [(accessed on 28 April 2021)]. Available online: https://www.cybersecurity-insiders.com/malware-and-ransomware-attack-on-medical-devices/
Sun Y., Lo F.P.-W., Lo B. Security and Privacy for the Internet of Medical Things Enabled Healthcare Systems: A Survey. IEEE Access. 2019;7:183339–183355. doi: 10.1109/ACCESS.2019.2960617. DOI
Landau O., Cohen A., Gordon S., Nissim N. Mind your privacy: Privacy leakage through BCI applications using machine learning methods. Knowl.-Based Syst. 2020;198:105932. doi: 10.1016/j.knosys.2020.105932. DOI
Bolton T., Dargahi T., Belguith S., Al-Rakhami M.S., Sodhro A.H. On the security and privacy challenges of virtual assistants. Sensors. 2021;21:2312. doi: 10.3390/s21072312. PubMed DOI PMC
Xing K., Srinivasan S.S.R., Jose M., Li J., Cheng X. Network Security. Springer; Berlin/Heidelberg, Germany: 2010. Attacks and countermeasures in sensor networks: A survey; pp. 251–272.
Bostami B., Ahmed M., Choudhury S. Performability in Internet of Things. Springer; Berlin/Heidelberg, Germany: 2019. False Data Injection Attacks in Internet of Things; pp. 47–58.
Rahman M.A., Mohsenian-Rad H. False data injection attacks with incomplete information against smart power grids; Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM); Anaheim, CA, USA. 3–7 December 2012; pp. 3153–3158.
Hei X., Du X., Wu J., Hu F. Defending resource depletion attacks on implantable medical devices; Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010; Miami, FL, USA. 6–10 December 2010; pp. 1–5.
Zhang M., Raghunathan A., Jha N.K. MedMon: Securing medical devices through wireless monitoring and anomaly detection. IEEE Trans. Biomed. Circuits Syst. 2013;7:871–881. doi: 10.1109/TBCAS.2013.2245664. PubMed DOI
Qu G., Yuan L. Design THINGS for the Internet of Things—An EDA perspective; Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD); San Jose, CA, USA. 3–6 November 2014; pp. 411–416.
Mosenia A., Jha N.K. A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 2016;5:586–602. doi: 10.1109/TETC.2016.2606384. DOI
Gupta R., Tanwar S., Tyagi S., Kumar N. Machine learning models for secure data analytics: A taxonomy and threat model. Comput. Commun. 2020;153:406–440. doi: 10.1016/j.comcom.2020.02.008. DOI
Zuhair H., Selamat A., Krejcar O. A Multi-Tier Streaming Analytics Model of 0-Day Ransomware Detection Using Machine Learning. Appl. Sci. 2020;10:3210. doi: 10.3390/app10093210. DOI
Fernandez Maimo L., Huertas Celdran A., Perales Gomez A.L., Garcia Clemente F.J., Weimer J., Lee I. Intelligent and dynamic ransomware spread detection and mitigation in integrated clinical environments. Sensors. 2019;19:1114. doi: 10.3390/s19051114. PubMed DOI PMC
Yaacoub J.-P.A., Noura M., Noura H.N., Salman O., Yaacoub E., Couturier R., Chehab A. Securing internet of medical things systems: Limitations, issues and recommendations. Future Gener. Comput. Syst. 2020;105:581–606. doi: 10.1016/j.future.2019.12.028. DOI
Spiekermann S. Ethical IT Innovation: A Value-Based System Design Approach. CRC Press; Boca Raton, FL, USA: 2015.
Bahşi H., Nõmm S., La Torre F.B. Dimensionality reduction for machine learning based iot botnet detection; Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV); Singapore. 18–21 November 2018; pp. 1857–1862.
Shafiq M., Tian Z., Bashir A.K., Du X., Guizani M. IoT malicious traffic identification using wrapper-based feature selection mechanisms. Comput. Secur. 2020;94:101863. doi: 10.1016/j.cose.2020.101863. DOI
Xiao L., Wan X., Lu X., Zhang Y., Wu D. IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Signal Process. Mag. 2018;35:41–49. doi: 10.1109/MSP.2018.2825478. DOI
Sehatbakhsh N., Alam M., Nazari A., Zajic A., Prvulovic M. Syndrome: Spectral analysis for anomaly detection on medical iot and embedded devices; Proceedings of the 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST); Washington, DC, USA. 30 April–4 May 2018; pp. 1–8.
Abdaoui A., Al-Ali A., Riahi A., Mohamed A., Du X., Guizani M. Energy Efficiency of Medical Devices and Healthcare Applications. Elsevier; Amsterdam, The Netherlands: 2020. Secure medical treatment with deep learning on embedded board; pp. 131–151.
Rathore H., Wenzel L., Al-Ali A.K., Mohamed A., Du X., Guizani M. Multi-layer perceptron model on chip for secure diabetic treatment. IEEE Access. 2018;6:44718–44730. doi: 10.1109/ACCESS.2018.2854822. DOI
Ben Amor L., Lahyani I., Jmaiel M. AUDIT: Anomalous data detection and Isolation approach for mobile healThcare systems. Expert Syst. 2020;37:e12390. doi: 10.1111/exsy.12390. DOI
Khan F.A., Haldar N.A.H., Ali A., Iftikhar M., Zia T.A., Zomaya A.Y. A continuous change detection mechanism to identify anomalies in ECG signals for WBAN-based healthcare environments. IEEE Access. 2017;5:13531–13544. doi: 10.1109/ACCESS.2017.2714258. DOI
Kintzlinger M., Cohen A., Nissim N., Rav-Acha M., Khalameizer V., Elovici Y., Shahar Y., Katz A. CardiWall: A Trusted Firewall for the Detection of Malicious Clinical Programming of Cardiac Implantable Electronic Devices. IEEE Access. 2020;8:48123–48140. doi: 10.1109/ACCESS.2020.2978631. DOI
Ferrag M.A., Shu L., Djallel H., Choo K.-K.R. Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack in Agriculture 4.0. Electronics. 2021;10:1257. doi: 10.3390/electronics10111257. DOI
NG B.A., Selvakumar S. Anomaly detection framework for Internet of things traffic using vector convolutional deep learning approach in fog environment. Future Gener. Comput. Syst. 2020;113:255–265.
Priyadarshini R., Barik R.K. A deep learning based intelligent framework to mitigate DDoS attack in fog environment. J. King Saud Univ.-Comput. Inf. Sci. 2019 doi: 10.1016/j.jksuci.2019.04.010. in press. DOI
Sudqi Khater B., Wahab A., Bin A.W., Idris M.Y.I.B., Abdulla Hussain M., Ahmed Ibrahim A. A lightweight perceptron-based intrusion detection system for fog computing. Appl. Sci. 2019;9:178. doi: 10.3390/app9010178. DOI
Fantacci R., Nizzi F., Pecorella T., Pierucci L., Roveri M. False data detection for fog and internet of things networks. Sensors. 2019;19:4235. doi: 10.3390/s19194235. PubMed DOI PMC
De Donno M., Donaire Felipe J.M., Dragoni N. ANTIBIOTIC 2.0: A Fog-based Anti-Malware for Internet of Things; Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW); Stockholm, Sweden. 17–19 June 2019; pp. 11–20.
Alrashdi I., Alqazzaz A., Alharthi R., Aloufi E., Zohdy M.A., Ming H. FBAD: Fog-based attack detection for IoT healthcare in smart cities; Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON); New York, NY, USA. 10–12 October 2019; pp. 515–522.
Kumar P., Gupta G.P., Tripathi R. An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. Comput. Commun. 2021;166:110–124. doi: 10.1016/j.comcom.2020.12.003. DOI
Hameed S.S., Hassan W.H., Latiff L.A. Innovative Systems for Intelligent Health Informatics. Springer; Cham, Switzerland: 2021. An Efficient Fog-Based Attack Detection Using Ensemble of MOA-WMA for Internet of Medical Things; pp. 774–785.
Cisco C. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are. 2015. [(accessed on 10 March 2019)]. Электронный Ресурс. Available online: https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf.
OpenFog Consortium Architecture Working Group OpenFog reference architecture for fog computing. OPFRA001. 2017;162:20817.
Alaei P., Noorbehbahani F. Incremental anomaly-based intrusion detection system using limited labeled data; Proceedings of the 2017 3th International Conference on Web Research (ICWR); Tehran, Iran. 19–20 April 2017; pp. 178–184.
Muallem A., Shetty S., Pan J.W., Zhao J., Biswal B. Hoeffding tree algorithms for anomaly detection in streaming datasets: A survey. J. Inf. Secur. 2017;8:339–361. doi: 10.4236/jis.2017.84022. DOI
Gama J., Medas P., Rodrigues P. Learning decision trees from dynamic data streams; Proceedings of the 2005 ACM Symposium on Applied computing; New York, NY, USA. 13–17 March 2005; pp. 573–577.
Holmes G., Kirkby R., Pfahringer B. Stress-testing hoeffding trees; Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery; Porto, Portugal. 3–7 October 2005; pp. 495–502.
Kolter J.Z., Maloof M.A. Dynamic weighted majority: An ensemble method for drifting concepts. J. Mach. Learn. Res. 2007;8:2755–2790.
Littlestone N., Warmuth M.K. The weighted majority algorithm. Inf. Comput. 1994;108:212–261. doi: 10.1006/inco.1994.1009. DOI
Moustafa N. New Generations of Internet of Things Datasets for Cybersecurity Applications based Machine Learning: Ton_iot datasets; Proceedings of the eResearch Australasia Conference; Brisbane, Australia. 21–25 October 2019; DOI
Sarhan M., Layeghy S., Moustafa N., Portmann M. Netflow datasets for machine learning-based network intrusion detection systems. arXiv. 20202011.09144
Bhatia N. Survey of nearest neighbor techniques. arXiv. 20101007.0085