A Hybrid Lightweight System for Early Attack Detection in the IoMT Fog

. 2021 Dec 11 ; 21 (24) : . [epub] 20211211

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34960384

Grantová podpora
FRGS/1/2018/ICT04/UTM/01/1 Ministry of Higher Education
Vot 4L876 Ministry of Higher Education

Cyber-attack detection via on-gadget embedded models and cloud systems are widely used for the Internet of Medical Things (IoMT). The former has a limited computation ability, whereas the latter has a long detection time. Fog-based attack detection is alternatively used to overcome these problems. However, the current fog-based systems cannot handle the ever-increasing IoMT's big data. Moreover, they are not lightweight and are designed for network attack detection only. In this work, a hybrid (for host and network) lightweight system is proposed for early attack detection in the IoMT fog. In an adaptive online setting, six different incremental classifiers were implemented, namely a novel Weighted Hoeffding Tree Ensemble (WHTE), Incremental K-Nearest Neighbors (IKNN), Incremental Naïve Bayes (INB), Hoeffding Tree Majority Class (HTMC), Hoeffding Tree Naïve Bayes (HTNB), and Hoeffding Tree Naïve Bayes Adaptive (HTNBA). The system was benchmarked with seven heterogeneous sensors and a NetFlow data infected with nine types of recent attack. The results showed that the proposed system worked well on the lightweight fog devices with ~100% accuracy, a low detection time, and a low memory usage of less than 6 MiB. The single-criteria comparative analysis showed that the WHTE ensemble was more accurate and was less sensitive to the concept drift.

Zobrazit více v PubMed

Gatouillat A., Badr Y., Massot B., Sejdic E. Internet of Medical Things: A Review of Recent Contributions Dealing with Cyber-Physical Systems in Medicine. IEEE Internet Things J. 2018;5:3810–3822. doi: 10.1109/JIOT.2018.2849014. DOI

Pandey P., Litoriya R. Elderly care through unusual behavior detection: A disaster management approach using IoT and intelligence. IBM J. Res. Dev. 2020;64:15:1–15:11. doi: 10.1147/JRD.2019.2947018. DOI

Uddin M.A., Stranieri A., Gondal I., Balasubramanian V. Continuous Patient Monitoring with a Patient–Centric Agent: A Block Architecture. IEEE Access. 2018;6:32700–32726. doi: 10.1109/ACCESS.2018.2846779. DOI

Hameed S.S., Hassan W.H., Latiff L.A., Ghabban F. A systematic review of security and privacy issues in the internet of medical things; the role of machine learning approaches. PeerJ Comput. Sci. 2021;7:e414. doi: 10.7717/peerj-cs.414. PubMed DOI PMC

Nanayakkara N., Halgamuge M., Syed A. Security and Privacy of Internet of Medical Things (IoMT) Based Healthcare Applications: A Review; Proceedings of the International Conference on Advances in Business Management and Information Technology; Istanbul, Turkey. 11 June–11 July 2019.

Dang L.M., Piran M., Han D., Min K., Moon H. A survey on internet of things and cloud computing for healthcare. Electronics. 2019;8:768. doi: 10.3390/electronics8070768. DOI

Newaz A., Sikder A.K., Rahman M.A., Uluagac A.S. A Survey on Security and Privacy Issues in Modern Healthcare Systems: Attacks and Defenses. ACM Trans. Comput. Healthc. 2021;2:27. doi: 10.1145/3453176. DOI

Firouzi F., Rahmani A.M., Mankodiya K., Badaroglu M., Merrett G.V., Wong P., Farahani B. Internet-of-Things and big data for smarter healthcare: From device to architecture, applications and analytics. Future Gener. Comput. Syst. 2018;78:583–586. doi: 10.1016/j.future.2017.09.016. DOI

Rahmani A.M., Gia T.N., Negash B., Anzanpour A., Azimi I., Jiang M., Liljeberg P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018;78:641–658. doi: 10.1016/j.future.2017.02.014. DOI

Wei K., Zhang L., Guo Y., Jiang X. Health Monitoring Based on Internet of Medical Things: Architecture, Enabling Technologies, and Applications. IEEE Access. 2020;8:27468–27478. doi: 10.1109/ACCESS.2020.2971654. DOI

Gupta S., Venugopal V., Mahajan V., Gaur S., Barnwal M., Mahajan H. HIPAA, GDPR and Best Practice Guidelines for preserving data security and privacy-What Radiologists should know; Proceedings of the European Congress of Radiology-ECR 2020; Vienna, Austria. 26 February–1 March 2020; Poster Number C-13220.

Jaigirdar F.T., Rudolph C., Bain C. Can I Trust the Data I See? A Physician’s Concern on Medical Data in IoT Health Architectures; Proceedings of the Australasian Computer Science Week Multiconference; Sydney, Australia. 29–31 January 2019; pp. 1–10.

Goud N. Malware and Ransomware Attack on Medical Devices. [(accessed on 28 April 2021)]. Available online: https://www.cybersecurity-insiders.com/malware-and-ransomware-attack-on-medical-devices/

Sun Y., Lo F.P.-W., Lo B. Security and Privacy for the Internet of Medical Things Enabled Healthcare Systems: A Survey. IEEE Access. 2019;7:183339–183355. doi: 10.1109/ACCESS.2019.2960617. DOI

Landau O., Cohen A., Gordon S., Nissim N. Mind your privacy: Privacy leakage through BCI applications using machine learning methods. Knowl.-Based Syst. 2020;198:105932. doi: 10.1016/j.knosys.2020.105932. DOI

Bolton T., Dargahi T., Belguith S., Al-Rakhami M.S., Sodhro A.H. On the security and privacy challenges of virtual assistants. Sensors. 2021;21:2312. doi: 10.3390/s21072312. PubMed DOI PMC

Xing K., Srinivasan S.S.R., Jose M., Li J., Cheng X. Network Security. Springer; Berlin/Heidelberg, Germany: 2010. Attacks and countermeasures in sensor networks: A survey; pp. 251–272.

Bostami B., Ahmed M., Choudhury S. Performability in Internet of Things. Springer; Berlin/Heidelberg, Germany: 2019. False Data Injection Attacks in Internet of Things; pp. 47–58.

Rahman M.A., Mohsenian-Rad H. False data injection attacks with incomplete information against smart power grids; Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM); Anaheim, CA, USA. 3–7 December 2012; pp. 3153–3158.

Hei X., Du X., Wu J., Hu F. Defending resource depletion attacks on implantable medical devices; Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010; Miami, FL, USA. 6–10 December 2010; pp. 1–5.

Zhang M., Raghunathan A., Jha N.K. MedMon: Securing medical devices through wireless monitoring and anomaly detection. IEEE Trans. Biomed. Circuits Syst. 2013;7:871–881. doi: 10.1109/TBCAS.2013.2245664. PubMed DOI

Qu G., Yuan L. Design THINGS for the Internet of Things—An EDA perspective; Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD); San Jose, CA, USA. 3–6 November 2014; pp. 411–416.

Mosenia A., Jha N.K. A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 2016;5:586–602. doi: 10.1109/TETC.2016.2606384. DOI

Gupta R., Tanwar S., Tyagi S., Kumar N. Machine learning models for secure data analytics: A taxonomy and threat model. Comput. Commun. 2020;153:406–440. doi: 10.1016/j.comcom.2020.02.008. DOI

Zuhair H., Selamat A., Krejcar O. A Multi-Tier Streaming Analytics Model of 0-Day Ransomware Detection Using Machine Learning. Appl. Sci. 2020;10:3210. doi: 10.3390/app10093210. DOI

Fernandez Maimo L., Huertas Celdran A., Perales Gomez A.L., Garcia Clemente F.J., Weimer J., Lee I. Intelligent and dynamic ransomware spread detection and mitigation in integrated clinical environments. Sensors. 2019;19:1114. doi: 10.3390/s19051114. PubMed DOI PMC

Yaacoub J.-P.A., Noura M., Noura H.N., Salman O., Yaacoub E., Couturier R., Chehab A. Securing internet of medical things systems: Limitations, issues and recommendations. Future Gener. Comput. Syst. 2020;105:581–606. doi: 10.1016/j.future.2019.12.028. DOI

Spiekermann S. Ethical IT Innovation: A Value-Based System Design Approach. CRC Press; Boca Raton, FL, USA: 2015.

Bahşi H., Nõmm S., La Torre F.B. Dimensionality reduction for machine learning based iot botnet detection; Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV); Singapore. 18–21 November 2018; pp. 1857–1862.

Shafiq M., Tian Z., Bashir A.K., Du X., Guizani M. IoT malicious traffic identification using wrapper-based feature selection mechanisms. Comput. Secur. 2020;94:101863. doi: 10.1016/j.cose.2020.101863. DOI

Xiao L., Wan X., Lu X., Zhang Y., Wu D. IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Signal Process. Mag. 2018;35:41–49. doi: 10.1109/MSP.2018.2825478. DOI

Sehatbakhsh N., Alam M., Nazari A., Zajic A., Prvulovic M. Syndrome: Spectral analysis for anomaly detection on medical iot and embedded devices; Proceedings of the 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST); Washington, DC, USA. 30 April–4 May 2018; pp. 1–8.

Abdaoui A., Al-Ali A., Riahi A., Mohamed A., Du X., Guizani M. Energy Efficiency of Medical Devices and Healthcare Applications. Elsevier; Amsterdam, The Netherlands: 2020. Secure medical treatment with deep learning on embedded board; pp. 131–151.

Rathore H., Wenzel L., Al-Ali A.K., Mohamed A., Du X., Guizani M. Multi-layer perceptron model on chip for secure diabetic treatment. IEEE Access. 2018;6:44718–44730. doi: 10.1109/ACCESS.2018.2854822. DOI

Ben Amor L., Lahyani I., Jmaiel M. AUDIT: Anomalous data detection and Isolation approach for mobile healThcare systems. Expert Syst. 2020;37:e12390. doi: 10.1111/exsy.12390. DOI

Khan F.A., Haldar N.A.H., Ali A., Iftikhar M., Zia T.A., Zomaya A.Y. A continuous change detection mechanism to identify anomalies in ECG signals for WBAN-based healthcare environments. IEEE Access. 2017;5:13531–13544. doi: 10.1109/ACCESS.2017.2714258. DOI

Kintzlinger M., Cohen A., Nissim N., Rav-Acha M., Khalameizer V., Elovici Y., Shahar Y., Katz A. CardiWall: A Trusted Firewall for the Detection of Malicious Clinical Programming of Cardiac Implantable Electronic Devices. IEEE Access. 2020;8:48123–48140. doi: 10.1109/ACCESS.2020.2978631. DOI

Ferrag M.A., Shu L., Djallel H., Choo K.-K.R. Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack in Agriculture 4.0. Electronics. 2021;10:1257. doi: 10.3390/electronics10111257. DOI

NG B.A., Selvakumar S. Anomaly detection framework for Internet of things traffic using vector convolutional deep learning approach in fog environment. Future Gener. Comput. Syst. 2020;113:255–265.

Priyadarshini R., Barik R.K. A deep learning based intelligent framework to mitigate DDoS attack in fog environment. J. King Saud Univ.-Comput. Inf. Sci. 2019 doi: 10.1016/j.jksuci.2019.04.010. in press. DOI

Sudqi Khater B., Wahab A., Bin A.W., Idris M.Y.I.B., Abdulla Hussain M., Ahmed Ibrahim A. A lightweight perceptron-based intrusion detection system for fog computing. Appl. Sci. 2019;9:178. doi: 10.3390/app9010178. DOI

Fantacci R., Nizzi F., Pecorella T., Pierucci L., Roveri M. False data detection for fog and internet of things networks. Sensors. 2019;19:4235. doi: 10.3390/s19194235. PubMed DOI PMC

De Donno M., Donaire Felipe J.M., Dragoni N. ANTIBIOTIC 2.0: A Fog-based Anti-Malware for Internet of Things; Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW); Stockholm, Sweden. 17–19 June 2019; pp. 11–20.

Alrashdi I., Alqazzaz A., Alharthi R., Aloufi E., Zohdy M.A., Ming H. FBAD: Fog-based attack detection for IoT healthcare in smart cities; Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON); New York, NY, USA. 10–12 October 2019; pp. 515–522.

Kumar P., Gupta G.P., Tripathi R. An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. Comput. Commun. 2021;166:110–124. doi: 10.1016/j.comcom.2020.12.003. DOI

Hameed S.S., Hassan W.H., Latiff L.A. Innovative Systems for Intelligent Health Informatics. Springer; Cham, Switzerland: 2021. An Efficient Fog-Based Attack Detection Using Ensemble of MOA-WMA for Internet of Medical Things; pp. 774–785.

Cisco C. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are. 2015. [(accessed on 10 March 2019)]. Электронный Ресурс. Available online: https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf.

OpenFog Consortium Architecture Working Group OpenFog reference architecture for fog computing. OPFRA001. 2017;162:20817.

Alaei P., Noorbehbahani F. Incremental anomaly-based intrusion detection system using limited labeled data; Proceedings of the 2017 3th International Conference on Web Research (ICWR); Tehran, Iran. 19–20 April 2017; pp. 178–184.

Muallem A., Shetty S., Pan J.W., Zhao J., Biswal B. Hoeffding tree algorithms for anomaly detection in streaming datasets: A survey. J. Inf. Secur. 2017;8:339–361. doi: 10.4236/jis.2017.84022. DOI

Gama J., Medas P., Rodrigues P. Learning decision trees from dynamic data streams; Proceedings of the 2005 ACM Symposium on Applied computing; New York, NY, USA. 13–17 March 2005; pp. 573–577.

Holmes G., Kirkby R., Pfahringer B. Stress-testing hoeffding trees; Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery; Porto, Portugal. 3–7 October 2005; pp. 495–502.

Kolter J.Z., Maloof M.A. Dynamic weighted majority: An ensemble method for drifting concepts. J. Mach. Learn. Res. 2007;8:2755–2790.

Littlestone N., Warmuth M.K. The weighted majority algorithm. Inf. Comput. 1994;108:212–261. doi: 10.1006/inco.1994.1009. DOI

Moustafa N. New Generations of Internet of Things Datasets for Cybersecurity Applications based Machine Learning: Ton_iot datasets; Proceedings of the eResearch Australasia Conference; Brisbane, Australia. 21–25 October 2019; DOI

Sarhan M., Layeghy S., Moustafa N., Portmann M. Netflow datasets for machine learning-based network intrusion detection systems. arXiv. 20202011.09144

Bhatia N. Survey of nearest neighbor techniques. arXiv. 20101007.0085

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...