Engineering the Ligand Specificity of the Human Galectin-1 by Incorporation of Tryptophan Analogues
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34978765
DOI
10.1002/cbic.202100593
Knihovny.cz E-zdroje
- Klíčová slova
- lectins, molecular dynamics, non-canonical amino acids, protein engineering, synthetic glycobiology,
- MeSH
- galektin 1 * chemie MeSH
- galektiny metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- oligosacharidy chemie MeSH
- tryptofan * MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- galektin 1 * MeSH
- galektiny MeSH
- ligandy MeSH
- oligosacharidy MeSH
- tryptofan * MeSH
Galectin-1 is a β-galactoside-binding lectin with manifold biological functions. A single tryptophan residue (W68) in its carbohydrate binding site plays a major role in ligand binding and is highly conserved among galectins. To fine tune galectin-1 specificity, we introduced several non-canonical tryptophan analogues at this position of human galectin-1 and analyzed the resulting variants using glycan microarrays. Two variants containing 7-azatryptophan and 7-fluorotryptophan showed a reduced affinity for 3'-sulfated oligosaccharides. Their interaction with different ligands was further analyzed by fluorescence polarization competition assay. Using molecular modeling we provide structural clues that the change in affinities comes from modulated interactions and solvation patterns. Thus, we show that the introduction of subtle atomic mutations in the ligand binding site of galectin-1 is an attractive approach for fine-tuning its interactions with different ligands.
cib Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
Department of Chemistry University of Karachi Karachi Pakistan
Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
Zobrazit více v PubMed
P. Bojarová, V. Křen, Biomater. Sci. 2016, 4, 1142-1160.
X. Dan, W. Liu, T. B. Ng, Med. Res. Rev. 2016, 36, 221-247.
J. Hirabayashi, M. Yamada, A. Kuno, H. Tateno, Chem. Soc. Rev. 2013, 42, 4443-4458.
W. B. Turnbull, A. Imberty, O. Blixt, Interface Focus 2019, 9, 20190004.
W. Kightlinger, K. F. Warfel, M. P. DeLisa, M. C. Jewett, ACS Synth. Biol. 2020, 9, 1534-1562.
J. Arnaud, A. Audfray, A. Imberty, Chem. Soc. Rev. 2013, 42, 4798-4813.
J. Hirabayashi, R. Arai, Interface Focus 2019, 9, 20180068.
S. Notova, F. Bonnardel, F. Lisacek, A. Varrot, A. Imberty, Curr. Opin. Struct. Biol. 2020, 62, 39-47.
I. Wagner, H. Musso, Angew. Chem. Int. Ed. Engl. 1983, 22, 816-828.
A. Dumas, L. Lercher, C. D. Spicer, B. G. Davis, Chem. Sci. 2015, 6, 50-69.
O. Vargas-Rodriguez, A. Sevostyanova, D. Söll, A. Crnković, Curr. Opin. Chem. Biol. 2018, 46, 115-122.
F. Tobola, M. Lelimousin, A. Varrot, E. Gillon, B. Darnhofer, O. Blixt, R. Birner-Gruenberger, A. Imberty, B. Wiltschi, ACS Chem. Biol. 2018, 13, 2211-2219.
E. Shanina, E. Siebs, H. Zhang, D. Varon Silva, I. Joachim, A. Titz, C. Rademacher, Glycobiology 2021, 31, 159-165.
H. J. Allen, H. Ahmed, K. L. Matta, Glycoconjugate J. 1998, 15, 691-695.
S. H. Barondes, V. Castronovo, D. N. W. Cooper, R. D. Cummings, K. Drickamer, T. Felzi, M. A. Gitt, J. Hirabayashi, C. Hughes, K.-i. Kasai, H. Leffler, F.-T. Liu, R. Lotan, A. M. Mercurio, M. Monsigny, S. Pillai, F. Poirer, A. Raz, P. W. J. Rigby, J. M. Rini, J. L. Wang, Cell 1994, 76, 597-598.
V. I. Teichberg, I. Silman, D. D. Beitsch, G. Resheff, Proc. Natl. Acad. Sci. USA 1975, 72, 1383-1387.
N. Ahmad, H. J. Gabius, S. Sabesan, S. Oscarson, C. F. Brewer, Glycobiology 2004, 14, 817-825.
S. R. Stowell, C. M. Arthur, P. Mehta, K. A. Slanina, O. Blixt, H. Leffler, D. F. Smith, R. D. Cummings, J. Biol. Chem. 2008, 283, 10109-10123.
A. Leppänen, S. Stowell, O. Blixt, R. D. Cummings, J. Biol. Chem. 2005, 280, 5549-5562.
F. Cedeno-Laurent, C. J. Dimitroff, Clin. Immunol. 2012, 142, 107-116.
C. M. Arthur, M. D. Baruffi, R. D. Cummings, S. R. Stowell, Methods Mol. Biol. 2015, 1207, 1-35.
I. Camby, M. Le Mercier, F. Lefranc, R. Kiss, Glycobiology 2006, 16, 137R-157R.
M. Cho, R. D. Cummings, J. Biol. Chem. 1995, 270, 5207-5212.
J. Hirabayashi, K. Kasai, J. Biol. Chem. 1991, 266, 23648-23653.
N. Nishi, A. Abe, J. Iwaki, H. Yoshida, A. Itoh, H. Shoji, S. Kamitori, J. Hirabayashi, T. Nakamura, Glycobiology 2008, 18, 1065-1073.
M. F. López-Lucendo, D. Solís, S. André, J. Hirabayashi, K.-i. Kasai, H. Kaltner, H.-J. Gabius, A. Romero, J. Mol. Biol. 2004, 343, 957-970.
N. Bertleff-Zieschang, J. Bechold, C. Grimm, M. Reutlinger, P. Schneider, G. Schneider, J. Seibel, ChemBioChem 2017, 18, 1477-1481.
T. J. Hsieh, H. Y. Lin, Z. Tu, B. S. Huang, S. C. Wu, C. H. Lin, PLoS One 2015, 10, e0125946.
I. V. Nesmelova, E. Ermakova, V. A. Daragan, M. Pang, M. Menéndez, L. Lagartera, D. Solís, L. G. Baum, K. H. Mayo, J. Mol. Biol. 2010, 397, 1209-1230.
S. Bertuzzi, A. Gimeno, R. Núñez-Franco, G. Bernardo-Seisdedos, S. Delgado, G. Jiménez-Osés, O. Millet, J. Jiménez-Barbero, A. Ardá, Chem. Eur. J. 2020, 26, 15643-15653.
J. M. Romero, M. Trujillo, D. A. Estrin, G. A. Rabinovich, S. Di Lella, Glycobiology 2016, 26, 1317-1327.
L. L. Kiessling, R. C. Diehl, ACS Chem. Biol. 2021, 16, 1884-1893.
J. L. Asensio, A. Arda, F. J. Canada, J. Jimenez-Barbero, Acc. Chem. Res. 2013, 46, 946-954.
M. G. Ford, T. Weimar, T. Kohli, R. J. Woods, Proteins 2003, 53, 229-240.
C. Meynier, F. Guerlesquin, P. Roche, J. Biomol. Struct. Dyn. 2009, 27, 49-58.
W. M. Abbott, T. Feizi, J. Biol. Chem. 1991, 266, 5552-5557.
B. Wiltschi in Synthetic Biology (Eds.: A. Glieder, C. Kubicek, D. Mattanovich, B. Wiltschi, M. Sauer), Springer, Cham, 2016, pp. 143-209.
F. Tobola, E. Sylvander, C. Gafko, B. Wiltschi, Interface Focus 2019, 9, 20180072.
R. F. Frederiksen, Y. Yoshimura, B. G. Storgaard, D. K. Paspaliari, B. O. Petersen, K. Chen, T. Larsen, J. Ø. Duus, H. Ingmer, N. V. Bovin, U. Westerlind, O. Blixt, M. M. Palcic, J. J. Leisner, J. Biol. Chem. 2015, 290, 5354-5366.
K. Peterson, P. M. Collins, X. Huang, B. Kahl-Knutsson, S. Essén, F. R. Zetterberg, S. Oredsson, H. Leffler, H. Blanchard, U. J. Nilsson, RSC Adv. 2018, 8, 24913-24922.
E. Salomonsson, A. Larumbe, J. Tejler, E. Tullberg, H. Rydberg, A. Sundin, A. Khabut, T. Frejd, Y. D. Lobsanov, J. M. Rini, U. J. Nilsson, H. Leffler, Biochemistry 2010, 49, 9518-9532.
L. Pegado, O. Marsalek, P. Jungwirth, E. Wernersson, Phys. Chem. Chem. Phys. 2012, 14, 10248-10257.
W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33-38.
M. I. Chávez, C. Andreu, P. Vidal, N. Aboitiz, F. Freire, P. Groves, J. L. Asensio, G. Asensio, M. Muraki, F. J. Cañada, J. Jiménez-Barbero, Chem. Eur. J. 2005, 11, 7060-7074.
J. Fanfrlík, M. Kolář, M. Kamlar, D. Hurný, F. X. Ruiz, A. Cousido-Siah, A. Mitschler, J. Řezáč, E. Munusamy, M. Lepšík, P. Matějíček, J. Veselý, A. Podjarny, P. Hobza, ACS Chem. Biol. 2013, 8, 2484-2492.
J. M. Fox, K. Kang, M. Sastry, W. Sherman, B. Sankaran, P. H. Zwart, G. M. Whitesides, Angew. Chem. Int. Ed. 2017, 56, 3833-3837;
Angew. Chem. 2017, 129, 3891-3895.
S. Di Lella, L. Ma, J. C. Díaz Ricci, G. A. Rabinovich, S. A. Asher, R. M. S. Álvarez, Biochemistry 2009, 48, 786-791.
R. Kumar, K. Peterson, M. Misini Ignjatović, H. Leffler, U. Ryde, U. J. Nilsson, D. T. Logan, Org. Biomol. Chem. 2019, 17, 1081-1089.
R. Kumar, M. M. Ignjatović, K. Peterson, M. Olsson, H. Leffler, U. Ryde, U. J. Nilsson, D. T. Logan, ChemMedChem 2019, 14, 1528-1536.