Architecture engineering of nanostructured catalyst via layer-by-layer adornment of multiple nanocatalysts on silica nanorod arrays for hydrogenation of nitroarenes
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
34992219
PubMed Central
PMC8738731
DOI
10.1038/s41598-021-02312-0
PII: 10.1038/s41598-021-02312-0
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Direct consideration for both, the catalytically active species and the host materials provides highly efficient strategies for the architecture design of nanostructured catalysts. The conventional wet chemical methods have limitations in achieving such unique layer-by-layer design possessing one body framework with many catalyst parts. Herein, an innovative physical method is presented that allows the well-regulated architecture design for an array of functional nanocatalysts as exemplified by layer-by-layer adornment of Pd nanoparticles (NPs) on the highly arrayed silica nanorods. This spatially confined catalyst exhibits excellent efficiency for the hydrogenation of nitroarenes and widely deployed Suzuki cross-coupling reactions; their facile separation from the reaction mixtures is easily accomplished due to the monolithic structure. The generality of this method for the introduction of other metal source has also been demonstrated with Au NPs. This pioneering effort highlights the feasibility of physically controlled architecture design of nanostructured catalysts which may stimulate further studies in the general domain of the heterogeneous catalytic transformations.
See more in PubMed
Hagen J. Industrial Catalysis: A Practical Approach. Wiley; 2015.
Ross JR. Heterogeneous Catalysis: Fundamentals and Applications. Elsevier; 2011.
Polshettiwar V, Varma RS. Green chemistry by nano-catalysis. Green Chem. 2010;12:743–754.
Polshettiwar V, Baruwati B, Varma RS. Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis. ACS Nano. 2009;3:728–736. PubMed
Ji D, Peng S, Fan L, Li L, Qin X, Ramakrishna S. Thin MoS2 nanosheets grafted MOFs-derived porous Co–N–C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A. 2017;5:23898–23908.
Huang W, Liu JH-C, Alayoglu P, Li Y, Witham CA, Tsung C-K, Toste FD, Somorjai GA. Highly active heterogeneous palladium nanoparticle catalysts for homogeneous electrophilic reactions in solution and the utilization of a continuous flow reactor. J. Am. Chem. Soc. 2010;132:16771–16773. PubMed
Liu L, Corma A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018;10:4981–5079. PubMed PMC
Cui X, Li W, Ryabchuk P, Junge K, Beller M. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 2020;1:376–385. PubMed PMC
White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009;38:481–494. PubMed
Wang ZL, Li C, Yamauchi Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today. 2016;11:373–391.
Bavykina A, Kolobob N, Khan IS, Bau JA, Ramireza GJ. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020;120:8468–8535. PubMed
Goetjen TA, Liu J, Wu Y, Sui J, Zhang X, Hupp JT, Farha OK. Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chem. Commun. 2020;56:10409–10418. PubMed
Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 2016;45:63–82. PubMed
Hulsey MJ, Lim CW, Yan N. Promoting heterogeneous catalysis beyond catalyst design. Chem. Sci. 2020;11:1456–1468. PubMed PMC
Mahmoud MA, Narayanan R, El-Sayed MA. Enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res. 2013;46:1795–1805. PubMed
Bakhtiarzadeh Z, Rouhani S, Karimi Z, Rostamnia S, Msagati TAM, Kim D, Jang HW, Ramakrishna S, Varma RS, Shokouhimehr M. Hydrothermal self - sacrificing growth of polymorphous MnO2 on magnetic porous-carbon (Fe3O4@Cg/MnO2): A sustainable nanostructured catalyst for activation of molecular oxygen. Mol. Catal. 2021;509:111603.
Gawande MB, Branco PS, Varma RS. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013;42:3371–3393. PubMed
Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Magnetically recoverable nanocatalysts. Chem. Rev. 2011;111:3036–3075. PubMed
Zaera F. Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 2013;42:2746–2762. PubMed
Shokouhimehr M, Shahedi Asl M, Mazinani B. Modulated large-pore mesoporous silica as an efficient base catalyst for the Henry reaction. Res. Chem. Intermed. 2018;44:1617–1626.
Astruc QWD. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020;120:1438–1511. PubMed
Perego C, Millini R. Porous materials in catalysis: Challenges for mesoporous materials. Chem. Soc. Rev. 2013;42:3956–3976. PubMed
Ishida T, Murayama T, Taketoshi A, Haruta M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 2020;120:464–525. PubMed
Hu H, Xin JH, Hu H, Wang X, Miaoa D, Liu Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions-a review. J. Mater. Chem. A. 2015;3:11157–11182.
Hong K, Sajjadi M, Suh JM, Zhang K, Nasrollahzadeh M, Jang HW, Varma RS, Shokouhimehr M. Palladium nanoparticles on assorted nanostructured supports: Applications for Suzuki, Heck, and Sonogashira cross-coupling reactions. ACS Appl. Nano Mater. 2020;3:2070–2103.
Shi J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 2013;113:2139–2181. PubMed
Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale. 2020;12:11333–11363. PubMed
Sogut EG, Kuyuldar HA, Karatas Y, Gulcan M, Sen F. Single-walled carbon nanotube supported Pt-Ru bimetallic superb nanocatalyst for the hydrogen generation from the methanolysis of methylamine-borane at mild conditions. Sci. Rep. 2019;9:15724. PubMed PMC
Zhang K, Cha JH, Jeon SY, Kirlikovali KO, Ostadhassan M, Rasouli V, Farha OK, Jang HW, Varma RS, Shokouhimehr M. Pd modified prussian blue frameworks: Multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics. Mol. Catal. 2020;492:110967.
Favier I, Pla D, Gómez M. Palladium nanoparticles in polyols: Synthesis, catalytic couplings, and hydrogenations. Chem. Rev. 2020;120:1146–1183. PubMed
Tao R, Ma X, Wei X, Jin Y, Qiu L, Zhang W. Porous organic polymer material supported palladium nanoparticles. J. Mater. Chem. A. 2020;8:17360–17391.
Easson MW, Jordan JH, Bland JM, Hinchliffe DJ, Condon BD. Application of brown cotton-supported palladium nanoparticles in Suzuki-Miyaura cross-coupling reactions. ACS Appl. Nano Mater. 2020;3:6304–6309.
Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020;120:623–682. PubMed
Wang C, Wang Q, Fu F, Astruc D. Hydrogen generation upon nanocatalyzed hydrolysis of hydrogen-rich boron derivatives: recent developments. ACC. Chem. Res. 2020;53:2483–2493. PubMed
Yang N, Cheng H, Liu X, Yun Q, Chen Y, Li B, Chen B, Zhang Z, Chen X, Lu Q, Huang J, Huang Y, Zong Y, Yang Y, Gu L, Zhang H. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018;30:1803234. PubMed
Zhan G, Li P, Zeng HC. Architectural designs and synthetic strategies of advanced nanocatalysts. Adv. Mater. 2018;30:1802094. PubMed
Shokouhimehr M, Hong K, Lee TH, Moon CW, Hong SP, Zhang K, Suh JM, Choi KS, Varma RS, Jang HW. Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: Efficient reduction of nitroaromatics in aqueous media. Green Chem. 2018;20:3809–3817.
Shokouhimehr M. Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts. 2015;5:534.
Jeon JM, Shim YS, Han SD, Kim DH, Kim YH, Kang CY, Kim JS, Kim M, Jang HW. Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases. J. Mater. Chem. A. 2015;3:17939–17945.
Sanchez-Valencia JR, Longtin R, Rossell MD, Gröning P. Growth assisted by glancing angle deposition: A new technique to fabricate highly porous anisotropic thin films. ACS Appl. Mater. Interfaces. 2016;8:8686–8693. PubMed
Barranco A, Borras A, Gonzalez-Elipe AR, Palmero A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci. 2016;76:59–153.
Yang X, Zhong H, Zhu Y, Jiang H, Shen J, Huang J, Li C. Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A. 2014;2:9040–9047.
Katal R, Masudy Panah S, Saeedikhani M, Kosari M, Sheng CC, Leong OS, Xiao G, Jiangyong H. Pd-decorated CuO thin film for photodegradation of acetaminophen and triclosan under visible light irradiation. Adv. Mater. Interfaces. 2018;5:1801440.
Jin Z, Liu C, Qi K, Cui X. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst. Sci. Rep. 2017;7:39695. PubMed PMC
Goswami A, Sopha H, Nandan D, Gawande MB, Cepe K, Ng S, Zboril R, Macak JM. Pt nanoparticles decorated TiO2 nanotubes for the reduction of olefins. Appl. Mater. Today. 2018;10:86–92.
Yamada YMA, Yuyama Y, Sato T, Fujikawa S, Uozumi Y. A palladium-nanoparticle and silicon-nanowire-array hybrid: A platform for catalytic heterogeneous reactions. Angew. Chem. Int. Ed. 2014;53:127–131. PubMed
Shokouhimehr M, Lee JE, Han SI, Hyeon T. Magnetically recyclable hollow nanocomposite catalysts for heterogeneous reduction of nitroarenes and Suzuki reactions. Chem. Commun. 2013;49:4779–4781. PubMed
Nayebi B, Rabiee N, Nayebi B, Shahedi AM, Ramakrishna S, Jang HW, Varma RS, Shokouhimehr M. Boron nitride-palladium nanostructured catalyst: efficient reduction of nitrobenzene derivatives in water. Nano Express. 2020;1:030012.
Shokouhimehr M, Mahmoudi Gom-Yek S, Nasrollahzadeh M, Kim A, Varma RS. Palladium nanocatalysts on hydroxyapatite: Green oxidation of alcohols and reduction of nitroarenes in water. Appl. Sci. 2019;9:4183.
Kadam HK, Tilve SG. Advancement in methodologies for reduction of nitroarenes. RSC Adv. 2015;5:83391–83407.
Shokouhimehr M, Shin KY, Lee JS, Hackett MJ, Jun SW, Oh MH, Jang J, Hyeon T. Magnetically recyclable core–shell nanocatalysts for efficient heterogeneous oxidation of alcohols. J. Mater. Chem. A. 2014;2:7593–7599.
Kalantari E, Khalilzadeh MA, Zareyee D, Shokouhimehr M. Catalytic degradation of organic dyes using green synthesized Fe3O4-cellulose-copper nanocomposites. J. Mol. Struct. 2020;1218:128488.
Cheng T, Zhang D, Li H, Liu G. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chem. 2014;16:3401–3427.
Iwamoto M, Tanaka Y, Sawamura N, Namba S. Remarkable effect of pore size on the catalytic activity of mesoporous silica for the acetalization of cyclohexanone with methanol. J. Am. Chem. Soc. 2003;125:13032–13033. PubMed