Genome sequence of a multidrug-resistant Campylobacter coli strain isolated from a newborn with severe diarrhea in Lebanon
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
34997523
DOI
10.1007/s12223-021-00921-w
PII: 10.1007/s12223-021-00921-w
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- Campylobacter coli * genetics MeSH
- Campylobacter jejuni * genetics MeSH
- Campylobacter Infections * MeSH
- Chickens genetics MeSH
- Microbial Sensitivity Tests MeSH
- Multilocus Sequence Typing MeSH
- Diarrhea MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Lebanon MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- RNA, Ribosomal, 16S MeSH
A multidrug-resistant (MDR) Campylobacter coli (C. coli) strain was isolated from a 2-month-old newborn who suffered from severe diarrhea in Lebanon. Here, whole-genome sequencing (WGS) analysis was deployed to determine the genetic basis of antimicrobial resistance and virulence in the C. coli isolate and to identify its epidemiological background (sequence type). The identity of the isolate was confirmed using API® Campy, MALDI-TOF, and 16S rRNA gene sequencing analysis. The antimicrobial susceptibility phenotype was determined using the disk diffusion assay. Our analysis showed that resistance to macrolide and quinolone was potentially associated with the presence of multiple point mutations in antibiotic targets on the chromosomal DNA. Furthermore, tetracycline and aminoglycoside resistance were encoded by genes on a pTet plasmid. The blaOXA-61, which is associated with beta-lactam resistance, was also detected in the C. coli genome. A set of 30 genes associated with the virulence in C. coli was detected using WGS analysis. MLST analysis classified the isolate as belonging to a new sequence type (ST-9588), a member of ST-828 complex which is mainly associated with humans and chickens. Taking together, this study provides the first WGS analysis of Campylobacter isolated from Lebanon. The detection of a variety of AMR and virulence determinants strongly emphasizes the need for studying the burden of Campylobacter in Lebanon and the Middle East and North Africa (MENA) region, where information on campylobacteriosis is scant.
See more in PubMed
Allard MW, Strain E, Melka D et al (2016) Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J Clin Microbiol 54:1975–1983. https://doi.org/10.1128/JCM.00081-16 PubMed DOI PMC
Bolton DJ (2015) Campylobacter virulence and survival factors. Food Microbiol 48:99–108. https://doi.org/10.1016/j.fm.2014.11.017 PubMed DOI
Bravo V, Katz A, Porte L et al (2021) Genomic analysis of the diversity antimicrobial resistance and virulence potential of clinical Campylobacter jejuni and Campylobacter coli strains from Chile. PLoS Negl Trop Dis 15:e0009207. https://doi.org/10.1371/journal.pntd.0009207 PubMed DOI PMC
Cagliero C, Mouline C, Payot S, Cloeckaert A (2005) Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. J Antimicrob Chemother 56:948–950. https://doi.org/10.1093/jac/dki292 PubMed DOI
CFSAN (2019) GenomeTrakr Network. In: FDA. http://www.fda.gov/food/whole-genome-sequencing-wgs-program/genometrakr-network . Accessed 23 Aug 2019
Chen Y, Mukherjee S, Hoffmann M et al (2013) Whole-genome sequencing of gentamicin-resistant Campylobacter coli isolated from U.S. retail meats reveals novel plasmid-mediated aminoglycoside resistance genes. Antimicrob Agents Chemother 57:5398–5405. https://doi.org/10.1128/AAC.00669-13 PubMed DOI PMC
Corcoran D, Quinn T, Cotter L et al (2005) Characterization of a cmeABC operon in a quinolone-resistant Campylobacter coli isolate of Irish origin. Microb Drug Resist Larchmt N 11:303–308. https://doi.org/10.1089/mdr.2005.11.303 DOI
Corcoran D, Quinn T, Cotter L, Fanning S (2006) An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter. Int J Antimicrob Agents 27:40–45. https://doi.org/10.1016/j.ijantimicag.2005.08.019 PubMed DOI
Dabboussi F, Alam S, Mallat H et al (2012) Preliminary study on the prevalence of Campylobacter in childhood diarrhoea in north Lebanon. East Mediterr Health J Rev Sante Mediterr Orient Al-Majallah Al-Sihhiyah Li-Sharq Al-Mutawassit 18:1225–1228
EFSA and ECDC (2018) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 16:e05500. https://doi.org/10.2903/j.efsa.2018.5500 DOI
EUCAST (2016) The European committee on antimicrobial susceptibility testing. http://www.eucast.org/ . Accessed 1 Feb 2019
Fadlallah SM, Shehab M, Cheaito K et al (2019) PulseNet Lebanon: an overview of its activities outbreak investigations and challenges. Foodborne Pathog Dis 16:498–503. https://doi.org/10.1089/fpd.2018.2581 PubMed DOI PMC
Faïs T, Delmas J, Serres A et al (2016) Impact of CDT Toxin on Human Diseases. Toxins 8:220. https://doi.org/10.3390/toxins8070220 DOI PMC
Friedman CR, Hoekstra RM, Samuel M et al (2004) Risk factors for sporadic Campylobacter infection in the United States: A case-control study in FoodNet sites. Clin Infect Dis Off Publ Infect Dis Soc Am 38(Suppl_3):S285-S296. https://doi.org/10.1086/381598
Fullerton KE, Ingram LA, Jones TF et al (2007) Sporadic Campylobacter infection in infants: a population-based surveillance case-control study. Pediatr Infect Dis J 26:19–24. https://doi.org/10.1097/01.inf.0000247137.43495.34 PubMed DOI
Gao L, Qi J, Sun J, Hao B (2007) Prokaryote phylogeny meets taxonomy: an exhaustive comparison of composition vector trees with systematic bacteriology. Sci China C Life Sci 50:587–599. https://doi.org/10.1007/s11427-007-0084-3 PubMed DOI
Ghorbanalizadgan M, Bakhshi B, Kazemnejad Lili A et al (2014) A molecular survey of Campylobacter jejuni and Campylobacter coli virulence and diversity. Iran Biomed J 18:158–164. https://doi.org/10.6091/ibj.1359.2014 PubMed DOI PMC
Greige S, Rivoal K, Osman M et al (2019) Prevalence and genetic diversity of Campylobacter spp in the production chain of broiler chickens in Lebanon and its association with the intestinal protozoan Blastocystis sp. Poult Sci 98:5883–5891. https://doi.org/10.3382/ps/pez286 PubMed DOI
Guk J-H, Kim J, Song H et al (2019) Hyper-aerotolerant Campylobacter coli from duck sources and its potential threat to public health: virulence antimicrobial resistance and genetic relatedness. Microorganisms 7:579. https://doi.org/10.3390/microorganisms7110579 DOI PMC
Hakanen AJ, Lehtopolku M, Siitonen A et al (2003) Multidrug resistance in Campylobacter jejuni strains collected from Finnish patients during 1995–2000. J Antimicrob Chemother 52:1035–1039. https://doi.org/10.1093/jac/dkg489 PubMed DOI
He Z, Gharaibeh RZ, Newsome RC et al (2019) Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68:289–300. https://doi.org/10.1136/gutjnl-2018-317200 PubMed DOI
Hernandez D, Tewhey R, Veyrieras J-B et al (2014) De novo finished 2.8 Mbp Staphylococcus aureus genome assembly from 100 bp short and long range paired-end reads. Bioinformatics 30:40–49. https://doi.org/10.1093/bioinformatics/btt590 PubMed DOI
Ibrahim JN, Eghnatios E, El Roz A et al (2019) Prevalence, antimicrobial resistance and risk factors for campylobacteriosis in Lebanon. J Infect Dev Ctries 13:11–20. https://doi.org/10.3855/jidc.10729 PubMed DOI
Juntunen P, Heiska H, Hänninen M-L (2012) Campylobacter coli isolates from Finnish farrowing farms using aminopenicillins: high prevalence of bla(OXA-61) and β-lactamase production but low MIC values. Foodborne Pathog Dis 9:902–906. https://doi.org/10.1089/fpd.2012.1176 PubMed DOI
Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter Infection. Clin Microbiol Rev 28:687–720. https://doi.org/10.1128/CMR.00006-15 PubMed DOI PMC
Kashoma IP, Kassem II, John J et al (2016) Prevalence and antimicrobial resistance of Campylobacter isolated from dressed beef carcasses and raw milk in Tanzania. Microb Drug Resist Larchmt N 22:40–52. https://doi.org/10.1089/mdr.2015.0079 DOI
Kassem II, Helmy YA, Kashoma IP, Rajachekara G (2016a) The emergence of antibiotic resistance on poultry farms. In: Ricke S (ed) Achieving sustainable production of poultry meat Volume 1: Safety quality and sustainability. Burleigh Dodds Science Publishing, Cambridge
Kassem II, Helmy YA, Pina-Mimbela R et al (2016b) Campylobacter in poultry: the conundrums of highly adaptable and ubiquitous foodborne pathogens. In: Soon JM, Manning L, Wallace CA (eds) Foodborne Diseases: Case Studies of Outbreaks in the Agri-Food Industries, 1st edn. CRC Press, Boca Raton, pp 79–112
Kharroubi S, Nasser NA, El-Harakeh MD et al (2020) First nation-wide analysis of food safety and acceptability data in Lebanon. Foods 9:1717. https://doi.org/10.3390/foods9111717 DOI PMC
Krzywinski M, Schein J, Birol İ et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. https://doi.org/10.1101/gr.092759.109 PubMed DOI PMC
Kulkarni SP, Lever S, Logan JMJ et al (2002) Detection of Campylobacter species: a comparison of culture and polymerase chain reaction based methods. J Clin Pathol 55:749–753. https://doi.org/10.1136/jcp.55.10.749 PubMed DOI PMC
Langille MGI, Hsiao WWL, Brinkman FSL (2010) Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 8:373–382. https://doi.org/10.1038/nrmicro2350 PubMed DOI
Laughlin M, Chatham-Stephens K, Geissler A (2020) Campylobacteriosis. In: CDC Yellow Book 2020: Health Information for International Travel. CDC, Atlanta
Marasini D, Fakhr MK (2017) Complete genome sequences of plasmid-bearing Campylobacter coli and Campylobacter jejuni strains isolated from retail chicken liver. Genome Announc 5:e01350-e1417. https://doi.org/10.1128/genomeA.01350-17 PubMed DOI PMC
Marasini D, Fakhr MK (2016) Whole-genome sequencing of a Campylobacter jejuni strain isolated from retail chicken meat reveals the presence of a megaplasmid with mu-like prophage and multidrug resistance genes. Genome Announc 4:e00460-e516. https://doi.org/10.1128/genomeA.00460-16 PubMed DOI PMC
Marasini D, Karki AB, Buchheim MA, Fakhr MK (2018) Phylogenetic relatedness among plasmids harbored by Campylobacter jejuni and Campylobacter coli isolated from retail meats. Front Microbiol 9:2167. https://doi.org/10.3389/fmicb.2018.02167 PubMed DOI PMC
Mendes RE, Deshpande LM, Jones RN (2014) Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 17:1–12. https://doi.org/10.1016/j.drup.2014.04.002 DOI
Nohra A, Grinberg A, Midwinter AC et al (2016) Molecular epidemiology of Campylobacter coli strains isolated from different sources in New Zealand between 2005 and 2014. Appl Environ Microbiol 82:4363–4370. https://doi.org/10.1128/AEM.00934-16 PubMed DOI PMC
Obeng AS, Rickard H, Sexton M et al (2012) Antimicrobial susceptibilities and resistance genes in Campylobacter strains isolated from poultry and pigs in Australia. J Appl Microbiol 113:294–307. https://doi.org/10.1111/j.1365-2672.2012.05354.x PubMed DOI
On SL (2001) Taxonomy of Campylobacter Arcobacter Helicobacter and related bacteria: current status future prospects and immediate concerns. Symp Ser Soc Appl Microbiol 90:1S-15S DOI
Pergola S, Franciosini MP, Comitini F et al (2017) Genetic diversity and antimicrobial resistance profiles of Campylobacter coli and Campylobacter jejuni isolated from broiler chicken in farms and at time of slaughter in central Italy. J Appl Microbiol 122:1348–1356. https://doi.org/10.1111/jam.13419 PubMed DOI
Petridou C, Strakova L, Simpson R (2018) Campylobacter fetus prosthetic valve endocarditis presenting as a stroke. JMM Case Rep 5:e005147. https://doi.org/10.1099/jmmcr.0.005147 PubMed DOI PMC
Piddock LJV, Ricci V, Pumbwe L et al (2003) Fluoroquinolone resistance in Campylobacter species from man and animals: detection of mutations in topoisomerase genes. J Antimicrob Chemother 51:19–26. https://doi.org/10.1093/jac/dkg033 PubMed DOI
Qin S, Wang Y, Zhang Q et al (2012) Identification of a novel genomic island conferring resistance to multiple aminoglycoside antibiotics in Campylobacter coli. Antimicrob Agents Chemother 56:5332–5339. https://doi.org/10.1128/AAC.00809-12 PubMed DOI PMC
Raeisi M, Khoshbakht R, Ghaemi EA et al (2017) Antimicrobial resistance and virulence-associated genes of Campylobacter spp isolated from raw milk fish poultry and red meat. Microb Drug Resist Larchmt N 23:925–933. https://doi.org/10.1089/mdr.2016.0183 DOI
Rafei R, Al Kassaa I, Osman M et al (2019) Molecular epidemiology of Campylobacter isolates from broiler slaughterhouses in Tripoli North of Lebanon. Br Poult Sci 60:675–682. https://doi.org/10.1080/00071668.2019.1645945 PubMed DOI
Roosaare M, Puustusmaa M, Möls M et al (2018) PlasmidSeeker: identification of known plasmids from bacterial whole genome sequencing reads. PeerJ 6:e4588. https://doi.org/10.7717/peerj.4588 PubMed DOI PMC
Sadowy E (2018) Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 99:89–98. https://doi.org/10.1016/j.plasmid.2018.09.011 PubMed DOI
Sahin O, Kassem II, Shen Z et al (2015) Campylobacter in poultry: ecology and potential interventions. Avian Dis 59:185–200. https://doi.org/10.1637/11072-032315-Review PubMed DOI
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153 DOI
Semaan EH, Dib H, Mrad R et al (2014) Dynamic of Campylobacter species contamination along a poultry slaughtering chain. Ital J Food Saf 3:2246. https://doi.org/10.4081/ijfs.2014.2246 PubMed DOI PMC
Shen Z, Wang Y, Zhang Q, Shen J (2018) Antimicrobial resistance in Campylobacter spp. Antimicrobial resistance in bacteria from livestock and companion animals. American Society of Microbiology, Washington, pp 317–330 DOI
Talhouk RS, el-Dana RA, Araj GF, et al (1998) Prevalence antimicrobial susceptibility and molecular characterization of Campylobacter isolates recovered from humans and poultry in Lebanon. J Med Liban 46:310–316 PubMed
Tang Y, Dai L, Sahin O et al (2017) Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter. J Antimicrob Chemother 72:1581–1588. https://doi.org/10.1093/jac/dkx023 PubMed DOI
Tegtmeyer N, Sharafutdinov I, Harrer A et al (2021) Campylobacter virulence factors and molecular host-pathogen interactions. Curr Top Microbiol Immunol 431:169–202. https://doi.org/10.1007/978-3-030-65481-8_7 PubMed DOI PMC
Vinueza-Burgos C, Wautier M, Martiny D et al (2017) Prevalence, antimicrobial resistance and genetic diversity of Campylobacter coli and Campylobacter jejuni in Ecuadorian broilers at slaughter age. Poult Sci 96:2366–2374. https://doi.org/10.3382/ps/pew487 PubMed DOI PMC
Wang Y, Zhang M, Deng F et al (2014) Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob Agents Chemother 58:5405–5412. https://doi.org/10.1128/AAC.03039-14 PubMed DOI PMC
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991 PubMed DOI PMC
Whitehouse CA, Zhao S, Tate H (2018) Antimicrobial resistance in Campylobacter species: mechanisms and genomic epidemiology. Adv Appl Microbiol 103:1–47. https://doi.org/10.1016/bs.aambs.2018.01.001 PubMed DOI
WHO (2020) Campylobacter. https://www.who.int/news-room/fact-sheets/detail/campylobacter . Accessed 22 May 2021
WHO (2018) Whole genome sequencing for foodborne disease surveillance: landscape paper. World Health Organization, Geneva
Zhao S, Mukherjee S, Hsu C-H et al (2019) Genomic analysis of emerging florfenicol-resistant Campylobacter coli isolated from the cecal contents of cattle in the United States. mSphere 4:e00367–19. https://doi.org/10.1128/mSphere.00367-19
Zhao S, Tyson GH, Chen Y et al (2016) Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol 82:459–466. https://doi.org/10.1128/AEM.02873-15 PubMed DOI PMC