Graphene-Reinforced Carbon-Bonded Coarse-Grained Refractories

. 2021 Dec 27 ; 15 (1) : . [epub] 20211227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009331

Grantová podpora
SFB 920, Project-ID 169148856 Deutsche Forschungsgemeinschaft
Grant No. 20-01866S Czech Science Foundation

Carbon-bonded alumina refractories offer excellent thermal shock performance but are lacking in terms of mechanical strength. In the present contribution, the influence of the particle packing and the addition of graphene oxide (GO) to carbon-bonded alumina refractories on the physical and mechanical properties before and after thermal shock was investigated. Coarse tabular alumina grains were coated by a GO suspension and used to prepare dry-pressed compacts. The included graphite fraction (15 wt%) was either regarded as a lubricating matrix component or as a quasi-spherical component of a calculated density-optimized aggregate size distribution. During coking, the GO was reduced to thermally reduced graphene. The porosity, true density and thermal shock behavior in terms of the cold modulus of rupture (CMOR) and Young's modulus were compared. Samples with a higher density were obtained when the irregularly shaped graphite was considered as the matrix component (lubricant). The results showed that the use of GO had a positive impact on the mechanical properties of the graphene-reinforced Al2O3-C refractories, especially in the case of a less optimized packing, due to the bridging of delamination gaps. In addition, the thermal shock only had a minor impact on the Young's modulus and CMOR values of the samples. SEM investigation revealed very similar microstructures in coked as well as thermally shocked samples.

Zobrazit více v PubMed

Lee W.E., Zhang S. Melt corrosion of oxide and oxide-carbon refractories. Int. Mater. Rev. 1999;44:77–104. doi: 10.1179/095066099101528234. DOI

Carniglia S., Barna G. Handbook of Industrial Refractories Technology. Noyes Publications; Park Ridge, NJ, USA: 1992.

Ratle A., Pandolfelli V.C., Allaire C., Rigaud M. Correlation between thermal shock and mechanical impact resistance of refractories. Br. Ceram. Trans. 1997;96:225–230.

Poirier J., Qafssaoui F., Ildefonse J., Bouchetou M. Analysis and interpretiation of refractory mmicrostructure in studies of corrosionmechanisms by liquid oxides. J. Eur. Ceram. Soc. 2008;28:1557–1568. doi: 10.1016/j.jeurceramsoc.2007.10.012. DOI

TARJ, editor. Refractories Handbook. The Technical Association of Refractories; Tokyo, Japan: 1998. p. 2. Chapter I.1.

Cooper C.F., Alexander I.C., Hampson C.J. The role of graphite in the thermal shock resistance of refractories. Br. Ceram. Trans. 1985;84:57–62.

Amavis R. Refractories for the Steel Industry. EUR/European Commission; Springer; Cham, The Netherlands: 1990.

Roungos V., Aneziris C.G., Berek H. Novel Al2O3-C Refractories with Less Residual Carbon Due to Nanoscaled Additives for Continuous Steel Casting Applications. Adv. Eng. Mater. 2012;14:255–264. doi: 10.1002/adem.201100222. DOI

Skiera E., Malzbender J., Mönch J., Dudczig S., Aneziris C.G., Steinbrech R.W. Controlled crack propagation experiments with a novel alumina-based refractory. Adv. Eng. Mater. 2011;14:248–254. doi: 10.1002/adem.201100221. DOI

Fruhstorfer J., Dudczig S., Gehre P., Schmidt G., Brachhold N., Schöttler L., Aneziris C.G. Corrosion of carbon free and bonded refractories for application in steel ingot casting. Steel Res. Int. 2016;87:1014–1023. doi: 10.1002/srin.201600023. DOI

Fruhstorfer J., Schafföner S., Werner J., Wetzig T., Schöttler L., Aneziris C. Thermal shock performance of refractories for application in steel ingot casting. J. Ceram. Sci. Technol. 2016;7:173–182.

Schulle W. Refractory Materials (Feuerfeste Werkstoffe) 1st ed. Dt. Verlag für Grundstoffind; Leipzig, Germany: 1990. p. 208.

Lee W.E., Zhang S., Karakus M. Refractories: Controlled microstructure composites for extreme environments. J. Mater. Sci. 2004;39:6675–6685. doi: 10.1023/B:JMSC.0000045599.84988.9e. DOI

Werner J., Aneziris C., Dudczig S. Young’s modulus of elasticity of carbon-bonded alumina materials up tp 1450 °C. J. Am. Ceram. Soc. 2013;96:2958–2965. doi: 10.1111/jace.12526. DOI

Luchini B., Grabenhorst J., Fruhstorfer J., Pandolfelli V., Aneziris C. On the nonlinear behavior of Young’s modulus of carbon-bonded alumina at high temperatures. J. Am. Ceram. Soc. 2018;101:4171–4183. doi: 10.1111/jace.15575. DOI

Steinbrech R. Toughening mechanisms for ceramic materials. J. Eur. Ceram. Soc. 1992;10:131–142. doi: 10.1016/0955-2219(92)90026-A. DOI

Fruhstorfer J., Hubalkova J., Aneziris C. Particle packings minimizing density gradients of coarse-grained compacts. J. Eur. Ceram. Soc. 2019;39:3264–3276. doi: 10.1016/j.jeurceramsoc.2019.03.039. DOI

Fruhstorfer J. Influence of the particle size distribution of coarse-grained refractories on the thermal shock performance. J. Aust. Ceram. Soc. 2021;57:899–909. doi: 10.1007/s41779-021-00593-2. DOI

Larson D., Coppola J., Hasselman D. Fracture toughness and spalling behavior of high-Al2O3 refractories. J. Am. Ceram. Soc. 1974;57:417–421. doi: 10.1111/j.1151-2916.1974.tb11372.x. DOI

Wang Q., Li Y., Liao N., Xu X., Sang S., Xu Y., Wang G., Nath M. Synthesis of boron and nitrogen-doped expanded graphite as efficient reinforcement for Al2O3-C refractories. Ceram. Int. 2017;43:16710–16721. doi: 10.1016/j.ceramint.2017.09.063. DOI

Wang H., Li Y., Zhu T., Fu Z. Strengthening of Al2O3-C slide gate plate refractories with microcrystalline graphite. Ceram. Int. 2017;43:9912–9918. doi: 10.1016/j.ceramint.2017.04.178. DOI

Luo M., Li Y., Sang S., Zhao L., Jin S., Li Y. In situ formation of carbon nanotubes and ceramic whiskers in Al2O3–C refractories with addition of Ni-catalyzed phenolic resin. Mater. Sci. Eng. A. 2012;558:533–542. doi: 10.1016/j.msea.2012.08.044. DOI

Liao N., Li Y., Jin S., Sang S., Liu G. Reduced brittleness of multi-walled carbon nanotubes (MWCNTs) containing Al2O3-C refractories with boron carbide. Mater. Sci. Eng. A. 2017;698:80–87. doi: 10.1016/j.msea.2017.05.045. DOI

Liao N., Li Y., Jin S., Sang S., Harmuth H. Enhanced mechanical performance of Al2O3-C refractories with nano carbon black and in-situ formed multi-walled carbon nanotubes (MWCNTs) J. Eur. Ceram. Soc. 2016;36:867–874. doi: 10.1016/j.jeurceramsoc.2015.10.003. DOI

Gómez-Rodríguez C., Castillo-Rodríguez G.A., Rodríguez-Castellanos E.A., Vázquez-Rodríguez F.J., López-Perales J.F., Aguilar-Martínez J.A., Fernández-González D., García-Quiñonez L.V., Das-Roy T.K., Verdeja L.F. Development of an ultra-low carbon MgO refractory doped with α-Al2O3 nanoparticles for the steelmaking industry: A microstructural and thermo-mechanical study. Materials. 2020;13:715. doi: 10.3390/ma13030715. PubMed DOI PMC

Luo M., Li Y., Jin S., Sang S., Zhao L., Wang Q., Li Y. Microstructure and mechanical properties of multi-walled carbon nanotubes containing Al2O3-C refractories with addition of polycarbosilane. Ceram. Int. 2013;39:4831–4838. doi: 10.1016/j.ceramint.2012.11.075. DOI

Mertke A., Aneziris C.G. The influence of nanoparticles and functional metallic additions on the thermal shock resistance of carbon bonded alumina refractories. Ceram. Int. 2015;41:1541–1552. doi: 10.1016/j.ceramint.2014.09.090. DOI

Xu X., Li Y., Wang Q., Sang S., Pan L. Effect of alumina-coated graphite (ACG) on the microstructure and mechanical properties of Al2O3-C refractories. J. Ceram. Sci. Technol. 2017;8:455–462. doi: 10.4416/JCST2016-00079. DOI

Gao W. Graphene Oxide. Springer; Berlin/Heidelberg, Germany: 2015. The chemistry of graphene oxide; pp. 61–95.

Staudenmaier L. Verfahren zur darstellung der graphitsäure. Berichte der Deutschen Chemischen Gesellschaft. 1898;31:1481–1487. doi: 10.1002/cber.18980310237. DOI

Brodie B. Sur le poids atomique du graphite. Ann. Chim. Phys. 1860;59:466–472.

Hofmann U. Über die Formel der Graphitsäure. Kolloid-Zeitschrift. 1943;104:112–113. doi: 10.1007/BF01525822. DOI

Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI

Hummers W.S., Jr., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Jankovský O., Nováček M., Luxa J., Sedmidubský D., Fila V., Pumera M., Sofer Z. A New Member of the Graphene Family: Graphene Acid. Chem.-Eur. J. 2016;22:17416–17424. doi: 10.1002/chem.201603766. PubMed DOI

Nováček M., Jankovský O., Luxa J., Sedmidubský D., Pumera M., Fila V., Lhotka M., Klímová K., Matějková S., Sofer Z. Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A. 2017;5:2739–2748. doi: 10.1039/C6TA03631G. DOI

Zhao G., Li J., Ren X., Chen C., Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011;45:10454–10462. doi: 10.1021/es203439v. PubMed DOI

Klímová K., Pumera M., Luxa J., Jankovský O., Sedmidubský D., Matĕjková S., Sofer Z. Graphene oxide sorption capacity toward elements over the whole periodic table: A comparative study. J. Phys. Chem. C. 2016;120:24203–24212. doi: 10.1021/acs.jpcc.6b08088. DOI

Jankovský O., Lojka M., Luxa J., Sedmidubský D., Tomanec O., Zbořil R., Pumera M., Sofer Z. Selective Bromination of Graphene Oxide by the Hunsdiecker Reaction. Chem.-Eur. J. 2017;23:10473–10479. doi: 10.1002/chem.201702031. PubMed DOI

Bouša D., Luxa J., Mazánek V., Jankovský O., Sedmidubský D., Klímova K., Pumera M., Sofer Z. Toward graphene chloride: Chlorination of graphene and graphene oxide. RSC Adv. 2016;6:66884–66892. doi: 10.1039/C6RA14845J. DOI

Zhang X., An Y., Han J., Han W., Zhao G., Jin X. Graphene nanosheet reinforced ZrB2–SiC ceramic composite by thermal reduction of graphene oxide. RSC Adv. 2015;5:47060–47065. doi: 10.1039/C5RA05922D. DOI

Wang Q., Li Y., Luo M., Sang S., Zhu T., Zhao L. Strengthening mechanism of graphene oxide nanosheets for Al2O3-C refractories. Ceram. Int. 2014;40:163–172. doi: 10.1016/j.ceramint.2013.05.117. DOI

Zhu T., Li Y., Luo M., Sang S., Wang Q., Zhao L., Li Y., Li S. Microstructure and mechanical properties of MgOC refractories containing graphite oxide nanosheets (GONs) Ceram. Int. 2013;39:3017–3025. doi: 10.1016/j.ceramint.2012.09.080. DOI

Fruhstorfer J., Aneziris C. The influence of the coarse fraction on the porosity of refractory castables. J. Ceram. Sci. Technol. 2014;5:155–165.

Roungos V., Aneziris C. Prospects of developing self glazing Al2O3-C refractories for monobloc stoppers applications. Refract. Worldforum. 2011;3:94–98.

Onoda G. Ceramic Processing Before Firing. John-Wiley and Sons; New York, NY, USA: 1978. The rheology of organic binder solutions; pp. 235–251.

Brachhold N., Fruhstorfer J., Mertke A., Aneziris C.G. Carbon-bonded alumina refractories with reduced carbon content due to the addition of semi-conductive silicon and/or nanoparticles. J. Ceram. Sci. Technol. 2016;7:209–222.

Böhm A., Dudczig S., Fruhstorfer J., Mertke A., Aneziris C.G., Malzbender J. Thermal shock and thermo-mechanical behavior of carbon-reduced and carbon-free refractories. J. Ceram. Sci. Technol. 2016;7:155–164. doi: 10.4416/JCST2015-00081. DOI

Jankovský O., Jiříčková A., Luxa J., Sedmidubský D., Pumera M., Sofer Z. Fast Synthesis of Highly Oxidized Graphene Oxide. ChemistrySelect. 2017;2:9000–9006. doi: 10.1002/slct.201701784. DOI

Fruhstorfer J. Continuous gap-graded particle packing designs. Mater. Today Commun. 2019;20:100550. doi: 10.1016/j.mtcomm.2019.100550. DOI

Andreasen A.H.M. Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten) Kolloid-Zeitschrift. 1930;50:217–228. doi: 10.1007/BF01422986. DOI

Roungos V., Aneziris C. Improved thermal shock performance of Al2O3–C refractories due to nanoscaled additives. Ceram. Int. 2012;38:919–927. doi: 10.1016/j.ceramint.2011.08.011. DOI

Montgomery D.C. Design and Analysis of Experiments. John Wiley & Sons; New York, NY, USA: 2001. pp. 200–201.

R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018.

Fruhstorfer J., Möhmel S., Thalheim M., Schmidt G., Aneziris C.G. Microstructure and strength of fused high alumina materials with 2.5 wt% zirconia and 2.5 wt% titania additions for refractory applications. Ceram. Int. 2015;41:10644–10653. doi: 10.1016/j.ceramint.2015.04.164. DOI

Storti E., Jiříčková A., Dudczig S., Hubálková J., Aneziris C.G. Alumina castables with addition of fibers produced by electrospinning. Ceram. Int. 2020;46:16653–16662. doi: 10.1016/j.ceramint.2020.03.238. DOI

Ulbricht J., Dudczig S., Tomsu F., Palco S. Technological measures to improve the thermal shock resistance of refractory materials. Interceram. 2012;2:103–106.

Li Y., Li X., Zhu B., Chen P. The relationship between the pore size distirbution and the thermo-mechanical properties of high alumina refractory castables. Int. J. Mater. Res. 2016;107:263–268. doi: 10.3139/146.111336. DOI

Stein V., Aneziris C. Low-carbon carbon-bonded alumina refractories for functional components in steel technology. J. Ceram. Sci. Technol. 2014;5:115–124.

Luo M., Li Y., Jin S., Sang S., Zhao L., Li Y. Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes. Mater. Sci. Eng. A. 2012;548:134–141. doi: 10.1016/j.msea.2012.04.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...