The Influence of Cultural Experiences on the Associations between Socio-Economic Status and Motor Performance as Well as Body Fat Percentage of Grade One Learners in Cape Town, South Africa
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35010376
PubMed Central
PMC8750979
DOI
10.3390/ijerph19010121
PII: ijerph19010121
Knihovny.cz E-zdroje
- Klíčová slova
- adiposity, children, cultural experiences, fundamental movement skills, physical fitness, socio-economic status,
- MeSH
- dítě MeSH
- ekonomický status * MeSH
- lidé MeSH
- motorické dovednosti MeSH
- společenská třída MeSH
- tělesná výkonnost * MeSH
- tuková tkáň MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Jihoafrická republika MeSH
Fundamental movement skills (FMS), physical fitness (PF) and body fat percentage (BF%) are significantly related to socio-economic status (SES). However, it remains unclear why previous studies have had different findings regarding the direction of the association between SES and FMS, PF and BF%. A suggested explanation is that the direction of the link can be influenced by cultural experiences and traditions. Therefore, the aim of the current study was to investigate links between SES and FMS, PF, BF% of Grade One learners from two different ethno-geographic areas in Cape Town, South Africa. Grade One children (n = 191) (n = 106 boys and n = 85 girls; age (6.7 ± 0.33)) from different socio-economic areas in Cape Town, South Africa, were selected to participate in the study. South African schools are classified into five different quintiles (1 = poorest and 5 = least poor public schools). For this study, two schools were selected, one from quintile 2 and the other from quintile 5. BF% was assessed according to Slaughter's equation. FMS were measured using the Gross Motor Development Test-2 (TGMD-2) and PF via five tests: 1. dynamic strength of lower limb (broad jump); 2. dynamic strength of upper limb and trunk (throwing a tennis ball); 3. speed agility (4 × 10 m shuttle running); 4. cardiorespiratory fitness (20 m shuttle run endurance test (Leger test)) and 5. flexibility (sit and reach test). An analysis of covariance (ANCOVA) found that BF% and WHtR were significantly greater in children with higher SES (Z = 6.04 p < 0.001; Hedg = 0.54), (Z = 3.89 p < 0.001; Hedg = 0.32). Children with lower SES achieved significantly better TGMD-2 standard scores in the locomotor subtest, compared to their peers with higher SES. In the object control subtest, no significant SES-related difference was found. However, ANCOVA showed that girls performed better in FMS than boys. In PF, the main effect of SES was observed in dynamic strength of trunk and upper limb (throwing) and flexibility, where children with lower SES performed significantly better. No significant difference was found in cardiorespiratory performance (CRP) (Beep test), even though children with lower SES achieved better results. Results from the current study suggest that links between SES, PF, FMS and body fat percentage in children seem to be dependent on cultural and traditional experiences. These experiences should therefore be included as an important factor for the development of programmes and interventions to enhance children's lifelong motor behaviour and health strategies.
Zobrazit více v PubMed
Robinson L.E., Stodden D.F., Barnett L.M., Lopes V.P., Logan S.W., Rodrigues L.P., D’Hondt E. Motor competence and its Effect on Positive Development Trajectories of Health. Sports Med. 2015;45:1273–1284. doi: 10.1007/s40279-015-0351-6. PubMed DOI
Cattuzzo M.T., Henrique R., Re A.H.N., De Oliveira I.S., Melo B.M., De Sousa Moura M., De Araujo R.C., Stodden D. Motor competence and health related physical fitness in youth: A systematic review. J. Sci. Med. Sport. 2016;19:123–129. doi: 10.1016/j.jsams.2014.12.004. PubMed DOI
Lubans D.R., Morgan P.J., Cliff D.P., Barnett L.M., Okely A.D. Fundamental Movement Skills in Children and Adolescents. Sports Med. 2010;40:1019–1035. doi: 10.2165/11536850-000000000-00000. PubMed DOI
Vameghi R., Shams A., Dehkordi P.S. The effect of age, sex and obesity on fundamental motor skills among 4 to 6 years-old children. Pak. J. Med. Sci. 2013;29:586–589. doi: 10.12669/pjms.292.3069. PubMed DOI PMC
Pienaar A.E., Van Reenen I., Weber A.M. Sex differences in fundamental movement skills of a selected group of 6-year-old South African children. Early Child Dev. Care. 2016;186:1994–2008. doi: 10.1080/03004430.2016.1146263. DOI
Niederer I., Kriemler S., Zahner L., Bürgi F., Ebenegger V., Marques-Vidal P., Puder J.J. BMI Group-Related Differences in Physical Fitness and Physical Activity in Preschool-Age Children. Res. Q. Exerc. Sport. 2012;83:12–19. doi: 10.1080/02701367.2012.10599820. PubMed DOI
Abdelkarim O., Ammar A., Trabelsi K., Cthourou H., Jekauc D., Irandoust K., Hoekelmann A. Prevalence of underweight and overweight and its association with physical fitness in Egyptian schoolchildren. Int. J. Environ. Res. Public Health. 2020;17:75. doi: 10.3390/ijerph17010075. PubMed DOI PMC
Musalek M., Kokstejn J., Papez P., Scheffler C., Mumm R., Czernitzki A., Koziel S. Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years. J. Biol. Clin. Anthropol. 2017;74:203–212. doi: 10.1127/anthranz/2017/0752. PubMed DOI
Ogden C.L., Carroll M.D., Curtin L.R., Lamb M.M., Flegal K.M. Prevalance of High Body Mass Index in US children and Adolescents, 2007–2008. J. Am. Med. Assoc. 2010;303:242–249. doi: 10.1001/jama.2009.2012. PubMed DOI
Stodden D.F., Goodway J.D., Langendorfer S.J., Roberton M., Rudisill M.E., Garcia C., Garcia L.E.A. Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. J. Mot. Competence Phys. Act. 2008;60:290–306. doi: 10.1080/00336297.2008.10483582. DOI
Choukem S., Kamdeu-Chedeu J., Leary S.D., Mboue-Djieka Y., Nebongo D.N., Akazong C., Mapoure Y.N., Hamilton-Shield J.P., Gautier J., Mbanya J.C. Overweight and obesity in children aged 3–13 years in urban Cameroon: A cros-sectional study of prevalence and association with socio-economic status. BMC Obes. 2017;4:1–8. doi: 10.1186/s40608-017-0146-4. PubMed DOI PMC
Rao D.P., Kropac E., Do M.T., Roberts K.C., Jayaraman G.C. Childhood overweight and obesity trends in Canada. Health Promot. Chronic Dis. Prev. Can. Res. Policy Pract. 2016;36:194. doi: 10.24095/hpcdp.36.9.03. PubMed DOI PMC
Hardy L., Mihrshahi S., Gale J., Drayton B.A., Bauman A., Mitchell J. 30-year trends in overweight, obesity and waist-to-height ratio by socioeconomic status in Australian children, 1985 to 2015. Int. J. Obes. 2017;41:76–82. doi: 10.1038/ijo.2016.204. PubMed DOI PMC
Matsudo V.K.R., Ferrari G.L.D.M., Araújo T.L., Oliveira L.C., Mire E., Barreira T.V., Katzmarzyk P. Socioeconomic status indicators, physical activity, and overweight/obesity in Brazilian children. Rev. Paul. De Pediatr. 2016;34:162–170. doi: 10.1016/j.rpped.2015.04.003. PubMed DOI PMC
Lee H.J., Kim S.H., Choi S.H., Lee J.S. The association between socioeconomic status and obesity in Korean children: An analysis of the Fifth Korea National Health and Nutrition Examination Survey (2010–2012) Pediatric Gastroenterol. Hepatol. Nutr. 2017;20:186–193. doi: 10.5223/pghn.2017.20.3.186. PubMed DOI PMC
Herrera J.C., Lira M., Kain J. Socioeconomic vulnerability and obesity in Chilean schoolchildren attending first grade: Comparison between 2009 and 2013. Rev. Chil. Pediatr. 2017;88:736–743. doi: 10.4067/S0370-41062017000600736. PubMed DOI
Al-Hussaini A., Bashir M.S., Khormi M., AlTuraiki M., Alkhamis W., Alrajhi M., Halal T. Overweight and obesity among Saudi children and adolescents: Where do we stand today? Saudi J. Gastroenterol. 2019;25:229–235. doi: 10.4103/sjg.SJG_617_18. PubMed DOI PMC
Griffiths P.L., Rousham E.K., A Norris S., Pettifor J.M., Cameron N. Socio-economic status and body composition outcomes in urban South African children. Arch. Dis. Child. 2008;93:862–867. doi: 10.1136/adc.2006.112649. PubMed DOI
Ljungvall Å. The Freer the Fatter? A Panel Study of the Relationship between Body-Mass Index and Economic Freedom. Lund University; Lund, Switzerland: 2013.
Costa-Font J., Mas N. Globesity? The effects of globalization on obesity and caloric intake. Food Policy. 2016;64:121–132. doi: 10.1016/j.foodpol.2016.10.001. DOI
Bobbio T.G., Morcillo A.M., Filho A.D.B., Goncalves V.M.G. Factors Associated with Inadequate Fine Motor Skills in Brazilian Students of Different Socioeconomic Status. Percept. Mot. Skills. 2007;105:1187–1195. doi: 10.2466/pms.105.4.1187-1195. PubMed DOI
Handal J.A., Lozoff B., Breilh J., Harlow D.S. Effect of community of residence on neurobehavioral development in infants and young children in a flower-growing region of Ecuador. Environ. Health Perspect. 2007;115:128–133. doi: 10.1289/ehp.9261. PubMed DOI PMC
Grantham-McGregor S.M., Fernald L.C., Kagawa R.M.C., Walker S. Effects of integrated child development and nutrition interventions on child development and nutritional status. Ann. N. Y. Acad. Sci. 2014;1308:11–32. doi: 10.1111/nyas.12284. PubMed DOI
Hardy L., King L., Farrell L., Macniven R., Howlett S. Fundamental movement skills among Australian preschool children. J. Sci. Med. Sport. 2010;13:503–508. doi: 10.1016/j.jsams.2009.05.010. PubMed DOI
Pienaar A.E., Visagie M., Leonard A. Proficiency at Object Control Skills by Nine- to Ten-Year-Old Children in South Africa: The NW-Child Study. Percept. Mot. Ski. 2015;121:309–332. doi: 10.2466/10.PMS.121c15x8. PubMed DOI
Mülazimoglu-Ballo Ö. Motor Proficiency and Body Mass Index of Preschool Children: In Relation to Socioeconomic Status. J. Educ. Train. Stud. 2017;4:237–243.
Aalizadeh B., Mohamadzadeh H., Hosseini F.S. Fundamental movement skills among Iranian primary school children. J. Fam. Reprod. Health. 2014;8:155–159. PubMed PMC
Venter A., Pienaar A.E., Coetzee D. Extent and nature of motor difficulties based on age, ethnicity, gender and socio-economic status in a selected group of three-to five-year-old children. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2015;37:169–183.
Armstrong M.E.G., Lambert E.V., Lambert M.I. Physical fitness of South African primary school children, 6 to 13 years of age: Discovery vitality health of the Nation study. Percept. Mot. Skills. 2011;113:999–1016. doi: 10.2466/06.10.13.PMS.113.6.999-1016. PubMed DOI
Eather N., Bull A., Young M.D., Barnes A.T., Pollock E.R., Morgan P.J. Fundamental movement skills: Where do girls fall short? A novel investigation of object-control skill execution in primary-school aged girls. Prev. Med. Rep. 2018;11:191–195. doi: 10.1016/j.pmedr.2018.06.005. PubMed DOI PMC
Navarro-Patón RLago-Ballesteros J., Arufe-Giráldez V., Sanmiguel-Rodríguez A., Lago-Fuentes C., Mecías-Calvo M. Gender differences on motor competence in 5-year-old preschool children regarding relative age. Int. J. Environ. Res. Public Health. 2021;18:3143. doi: 10.3390/ijerph18063143. PubMed DOI PMC
Morley D., Till K., Ogilvie P., Turner G. Influences of gender and socioeconomic status on the motor proficiency of children in the UK. Hum. Mov. Sci. 2015;44:150–156. doi: 10.1016/j.humov.2015.08.022. PubMed DOI
Cliff D.P., Okely A.D., Smith L.M., McKeen K. Relationships between fundamental movement skills and objectively measured physical activity in preschool children. Pediatric Exerc. Sci. 2009;21:436–449. doi: 10.1123/pes.21.4.436. PubMed DOI
Hardy L.L., Reinten-Reynolds T., Espinel P., Zask A., Okely A.D. Prevalence and correlates of low fundamental movement skill competency in children. Pediatrics. 2012;130:e390–e398. doi: 10.1542/peds.2012-0345. PubMed DOI
Latorre Román P.Á., Moreno del Castillo R., Lucena Zurita M., Salas Sánchez J., García-Pinillos F., Mora López D. Physical fitness in preschool children: Association with sex, age and weight status. Child Care Health Dev. 2017;43:267–273. doi: 10.1111/cch.12404. PubMed DOI
Dencker M., Thorsson O., Karlsson M.K., Lindén C., Eiberg S., Wollmer P., Andersen L.B. Gender differences and determinants of aerobic fitness in children aged 8–11 years. Eur. J. Appl. Physiol. 2007;99:19–26. doi: 10.1007/s00421-006-0310-x. PubMed DOI
Amusa L.O., Goon D.T., Amey A.K. Gender differences in neuromotor fitness of rural South African children. Med. Sport. 2010;6:221–237.
Van Capelle A., Broderick C.R., van Doorn N., Ward R.E., Parmenter B.J. Interventions to improve fundamental motor skills in pre-school aged children: A systematic review and meta-analysis. J. Sci. Med. Sport. 2017;20:658–666. doi: 10.1016/j.jsams.2016.11.008. PubMed DOI
Peralta L.R., Mihrshahi S., Bellew B., Reece L.J., Hardy L.L. Influence of School-Level Socioeconomic Status on Children’s Physical Activity, Fitness, and Fundamental Movement Skill Levels. J. Sch. Health. 2019;89:460–467. doi: 10.1111/josh.12761. PubMed DOI
de Greeff J.W., Bosker R.J., Oosterlaan J., Visscher C., Hartman E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport. 2018;21:501–507. doi: 10.1016/j.jsams.2017.09.595. PubMed DOI
Prista A., Marques A., Maia J. Relationship between physical activity, socioeconomic status, and physical fitness of 8–15-year-old youth from Mozambique. Am. J. Hum. Biol. 1997;9:449–457. doi: 10.1002/(SICI)1520-6300(1997)9:4<449::AID-AJHB4>3.0.CO;2-R. PubMed DOI
Freitas D., Maia J.M., Beunen G., Claessens A., Thomis M., Marques A., Crespo M., Lefevre J. Socio-economic status, growth, physical activity and fitness: The Madeira Growth Study. Ann. Hum. Biol. 2007;34:107–122. doi: 10.1080/03014460601080983. PubMed DOI
Hall C.J., Eyre E.L., Oxford S.W., Duncan M.J. Relationships between motor competence, physical activity, and obesity in British preschool aged children. J. Funct. Morphol. Kinesiol. 2018;3:57. doi: 10.3390/jfmk3040057. PubMed DOI PMC
Donnelly J.E., Greene J.L., Gibson C.A., Smith B.K., Washburn R.A., Sullivan D.K., Williams S.L. Physical Activity Across the Curriculum (PAAC): A randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Prev. Med. 2009;49:336–341. doi: 10.1016/j.ypmed.2009.07.022. PubMed DOI PMC
Keller B.A. State of the art reviews: Development of fitness in children: The influence of gender and physical activity. Am. J. Lifestyle Med. 2008;2:58–74. doi: 10.1177/1559827607308802. DOI
D’Haese S., Van Dyck D., De Bourdeaudhuij I., Deforche B., Cardon G. The association between objective walkability, neighborhood socio-economic status, and physical activity in Belgian children. Int. J. Behav. Nutr. Phys. Act. 2014;11:1–8. doi: 10.1186/s12966-014-0104-1. PubMed DOI PMC
National Norms And Standards For School Funding. [(accessed on 19 December 2021)]; Available online: https://www.education.gov.za/Portals/0/Documents/Legislation/Call%20for%20Comments/NATIONAL%20NORMS%20AND%20STANDARDS%20FOR%20SCHOOL%20FUNDING.pdf?ver=2008–03–05–104405–000.
Eston R., Reilly T. Physiology. Volume 2 Routledge; Milton Park, UK: 2013. Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data.
Slaughter M.H., Lohman T.G., A Boileau R., A Horswill C., Stillman R.J., Van Loan M.D., A Bemben D. Skinfold equations for estimation of body fatness in children and youth. J. Hum. Biol. 1988;60:709–723. PubMed
Reilly J.J. Assessment of body fat percentage in infants and children. Nutrition. 1988;14:821–825. doi: 10.1016/S0899-9007(98)00093-8. PubMed DOI
Kriemler S., Puder J., Zahner L., Roth R., Meyer U., Bedogni G. Estimation of percentage body fat in 6- to 13-year-old children by skinfold thickness, body mass index and waist circumference. Br. J. Nutr. 2010;104:1565–1572. doi: 10.1017/S0007114510002357. PubMed DOI
Morrison K.M., Bugge A., El-Naaman B., Eisenmann J.C., Froberg K., Pfeiffer K.A., Andersen L.B. Inter-Relationships Among Physical Activity, Body Fat, and Motor Performance in 6- to 8-Year-Old Danish Children. Pediatr. Exerc. Sci. 2012;24:199–209. doi: 10.1123/pes.24.2.199. PubMed DOI
Hassapidou M., Daskalou E., Tsofliou F., Tziomalos K., Paschaleri A., Pagkalos I., Tzotzas T. Prevalence of overweight and obesity in preschool children in Thessaloniki, Greece. Hormones. 2015;14:615–622. doi: 10.14310/horm.2002.1601. PubMed DOI
Teo K.K., Rafiq T., Anand S.S., Schulze K.M., Yusuf S., McDonald S.D., Wahi G., Abdalla N., Desai D., Atkinson S.A., et al. Associations of cardiometabolic outcomes with indices of obesity in children aged 5 years and younger. PLoS ONE. 2019;14:e0218816. doi: 10.1371/journal.pone.0218816. PubMed DOI PMC
Santos S., Severo M., Lopes C., Oliveira A. Anthropometric Indices Based on Waist Circumference as Measures of Adiposity in Children. Obesity. 2018;26:810–813. doi: 10.1002/oby.22170. PubMed DOI
Nambiar S., Hughes I., Davies P.S. Developing waist-to-height ratio cut-offs to define overweight and obesity in children and adolescents. Public Health Nutr. 2010;13:1566–1574. doi: 10.1017/S1368980009993053. PubMed DOI
World Health Organization (WHO) The use and interpretation of anthropometry. WHO Tech. Rep. Ser. 1995;854:1–452. PubMed
Ulrich D.A. Test of Gross Motor Development. 2nd ed. Pro-Ed; Austin, TX, USA: 2000.
Foweather L., Knowles Z., Ridgers N., O’Dwyer M.V., Foulkes J.D., Stratton G. Fundamental movement skills in relation to weekday and weekend physical activity in preschool children. J. Sci. Med. Sport. 2015;18:691–696. doi: 10.1016/j.jsams.2014.09.014. PubMed DOI
Brien W.O., Belton S., Issartel J. Fundamental movement skill proficiency amongst adolescent youth. Phys. Educ. Sport Pedagog. 2016;21:557–571. doi: 10.1080/17408989.2015.1017451. DOI
Bolger L.E., Bolger L.A., O’Neill C., Coughlan E. Age and Sex Differences in Fundamental Movement Skills Among a Cohort of Irish School Children. J. Mot. Learn. Dev. 2018;6:81–100. doi: 10.1123/jmld.2017-0003. DOI
Mukherjee S., Jamie L.C.T., Fong L.H. Fundamental Motor Skill Proficiency of 6- to 9-Year-Old Singaporean Children. Percept. Mot. Ski. 2017;124:584–600. doi: 10.1177/0031512517703005. PubMed DOI
De Meester A., Stodden D., Goodway J., True L., Brian A., Ferkel R., Haerens L. Identifying a motor proficiency barrier for meeting physical activity guidelines in children. J. Sci. Med. Sport. 2018;21:58–62. doi: 10.1016/j.jsams.2017.05.007. PubMed DOI
Duncan M.J., Roscoe C.M., Noon M., Clark C., O’Brien W., Eyre E. Run, jump, throw and catch: How proficient are children attending English schools at the fundamental motor skills identified as key within the school curriculum? Eur. Phys. Educ. Rev. 2020;26:814–826. doi: 10.1177/1356336X19888953. DOI
Pienaar A. Kinderkinetics: An investment in the total well-being of children. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2009;31:49–67. doi: 10.4314/sajrs.v31i1.43792. DOI
Parızková J., Sedlak P., Dvorakova H., Lisá L., Bláha P. Secular trends of adiposity and motor abilities in preschool children. Obes. Weight. Loss Ther. 2012;2:153. doi: 10.4172/2165-7904.1000153. DOI
Ortega F.B., Cadenas-Sánchez C., Sanchez-Delgado G., Mora-Gonzalez J., Tellez B.M., Artero E.G., Castro-Piñero J., Labayen I., Chillón P., Löf M., et al. Systematic Review and Proposal of a Field-Based Physical Fitness-Test Battery in Preschool Children: The PREFIT Battery. Sports Med. 2015;45:533–555. doi: 10.1007/s40279-014-0281-8. PubMed DOI
Cadenas-Sanchez C., Martinez-Tellez B., Sanchez-Delgado G., Mora-Gonzalez J., Castro-Piñero J., Löf M., Ruiz J.R., Ortega F.B. Assessing physical fitness in preschool children: Feasibility, reliability and practical recommendations for the PREFIT battery. J. Sci. Med. Sport. 2016;19:910–915. doi: 10.1016/j.jsams.2016.02.003. PubMed DOI
Hair J.F., Black W.C., Babin B.J., Anderson R.E. Multivariate Data Analysis: Pearson New International Edition. Pearson Education Limited; London, UK: 2014.
Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum; Mahwah, NJ, USA: 1988.
Grissom R.J., Kim J.J. Effect Sizes for Research: Univariate and Multivariate Applications. Routledge; Milton Park, UK: 2012.
Hintze J. NCSS 2007. NCSS LLC; Kaysville, UT, USA: 2007. [(accessed on 16 September 2021)]. Available online: www.ncss.com.
Shen A., Bernabé E., Sabbah W. Severe dental caries is associated with incidence of thinness and overweight among preschool Chinese children. Acta Odontol. Scand. 2019;78:203–209. doi: 10.1080/00016357.2019.1679390. PubMed DOI
Cecil J., Watt P., Murrie I.S.L., Wrieden W., Wallis D., Hetherington M., Bolton-Smith C., Palmer C. Childhood obesity and socioeconomic status: A novel role for height growth limitation. Int. J. Obes. 2005;29:1199–1203. doi: 10.1038/sj.ijo.0803055. PubMed DOI
Bann D., Johnson W., Li L., Kuh D., Hardy R. Socioeconomic inequalities in childhood and adolescent body-mass index, weight, and height from 1953 to 2015: An analysis of four longitudinal, observational, British birth cohort studies. Lancet Public Health. 2018;3:e194–e203. doi: 10.1016/S2468-2667(18)30045-8. PubMed DOI PMC
Badran M., Laher I. Obesity in Arabic-Speaking Countries. J. Obes. 2011;2011:1–9. doi: 10.1155/2011/686430. PubMed DOI PMC
Addo I.Y., Brener L., Asante A.D., de Wit J. Socio-cultural beliefs about an ideal body size and implications for risk of excess weight gain after immigration: A study of Australian residents of sub-Saharan African ancestry. Ethn. Health. 2019;26:1209–1224. doi: 10.1080/13557858.2019.1607261. PubMed DOI
Choukem S.-P., Tochie J.N., Sibetcheu A.T., Nansseu J.R., Hamilton-Shield J.P. Overweight/obesity and associated cardiovascular risk factors in sub-Saharan African children and adolescents: A scoping review. Int. J. Pediatr. Endocrinol. 2020;2020:6. doi: 10.1186/s13633-020-0076-7. PubMed DOI PMC
Viner R.M., Haines M.M., Taylor S., Head J., Booy R., Stansfeld S. Body mass, weight control behaviours, weight perception and emotional well being in a multiethnic sample of early adolescents. Int. J. Obes. 2006;30:1514–1521. doi: 10.1038/sj.ijo.0803352. PubMed DOI
Kruger H.S., Puoane T., Senekal M., Van Der Merwe M.-T. Obesity in South Africa: Challenges for government and health professionals. Public Health Nutr. 2005;8:491–500. doi: 10.1079/PHN2005785. PubMed DOI
Puoane T., Fourie J.M., Shapiro M., Rosling L., Tshaka N.C., Oelefse A. ‘Big is beautiful’-an exploration with urban black community health workers in a South African township. S. Afr. J. Clin. Nutr. 2005;18:6–15. doi: 10.1080/16070658.2005.11734033. DOI
Bosire E.N., Cohen E., Erzse A., Goldstein S.J., Hofman K.J., Norris S.A. ‘I’d say I’m fat, I’m not obese’: Obesity normalisation in urban-poor South Africa. Public Health Nutr. 2020;23:1515–1526. doi: 10.1017/S1368980019004440. PubMed DOI PMC
Marsh H.W., Hau K.T., Sung R.Y.T., Yu C.W. Childhood obesity, gender, actual-ideal body image discrepancies, and physical self-concept in Hong Kong children: Cultural differences in the value of moderation. Dev. Psychol. 2007;43:647–662. doi: 10.1037/0012-1649.43.3.647. PubMed DOI
Jones A. Race, Socioeconomic Status, and Health during Childhood: A Longitudinal Examination of Racial/Ethnic Differences in Parental Socioeconomic Timing and Child Obesity Risk. Int. J. Environ. Res. Public Health. 2018;15:728. doi: 10.3390/ijerph15040728. PubMed DOI PMC
Adkins M.M., Bice M.R., Dinkel D., Rech J.P. Leveling the Playing Field: Assessment of Gross Motor Skills in Low Socioeconomic Children to their Higher Socioeconomic Counterparts. Int. J. Kinesiol. Sports Sci. 2017;5:28–34. doi: 10.7575/aiac.ijkss.v.5n.3p.28. DOI
Fu Y., Burns R.D. Effect of an Active Video Gaming Classroom Curriculum on Helath-Related Fitness, School Day Step Counts, and Motivation in Sixth Graders. J. Phys. Act. Health. 2018;15:644–650. doi: 10.1123/jpah.2017-0481. PubMed DOI
Tomaz S.A., Hinkley T., Jones R.A., Twine R., Kahn K., Norris S.A., Draper C.E. Objectively Measured Physical Activity in South African Children Attending Preschool and Grade R: Volume, Patterns, and Meeting Guidelines. Pediatr. Exerc. Sci. 2020;32:150–156. doi: 10.1123/pes.2019-0216. PubMed DOI
Goodway J.D., Smith D.W. Keeping all children healthy: Challenges to leading an active lifestyle for preschool children qualifying for at-risk programs. Fam. Community Health. 2005;28:142–155. doi: 10.1097/00003727-200504000-00006. PubMed DOI
Gosselin V., Leone M., Laberge S. Socioeconomic and gender-based disparities in the motor competence of school-age children. J. Sports Sci. 2021;39:341–350. doi: 10.1080/02640414.2020.1822585. PubMed DOI
Jones R.A., Riethmuller A., Hesketh K., Trezise J., Batterham M., Okely A. Promoting Fundamental Movement Skill Development and Physical Activity in Early Childhood Settings: A Cluster Randomized Controlled Trial. Pediatr. Exerc. Sci. 2011;23:600–615. doi: 10.1123/pes.23.4.600. PubMed DOI
Dinkel D., Snyder K., Patterson T., Warehime S., Kuhn M., Wisneski D. An exploration of infant and toddler unstructured outdoor play. Eur. Early Child. Educ. Res. J. 2019;27:257–271. doi: 10.1080/1350293X.2019.1579550. DOI
Behrens R., Muchaka P. Child Independent Mobility in South Africa: The Case of Cape Town and its Hinterland. Glob. Stud. Child. 2011;1:167–184. doi: 10.2304/gsch.2011.1.3.167. DOI
Larouche R., Oyeyemi A.L., Prista A., Onywera V., Akinroye K.K., Tremblay M.S. A systematic review of active transportation research in Africa and the psychometric properties of measurement tools for children and youth. Int. J. Behav. Nutr. Phys. Act. 2014;11:129. doi: 10.1186/s12966-014-0129-5. PubMed DOI PMC
Draper C.E., Tomaz S.A., Stone M., Hinkley T., Jones R.A., Louw J., Twine R., Kahn K., Norris S. Developing Intervention Strategies to Optimise Body Composition in Early Childhood in South Africa. BioMed Res. Int. 2017;2017:1–13. doi: 10.1155/2017/5283457. PubMed DOI PMC
Cook C.J., Howard S.J., Scerif G., Twine R., Kahn K., Norris S.A., Draper C.E. Associations of physical activity and gross motor skills with executive function in preschool children from low-income South African settings. Dev. Sci. 2019;22:e12820. doi: 10.1111/desc.12820. PubMed DOI
VandenDriessche J.B., Vaeyens R., Vandorpe B., Lenoir M., Lefevre J., Philippaerts R.M. Variation in sport participation, fitness and motor coordination with socioeconomic status among Flemish children. Pediatric Exerc. Sci. 2012;24:113–128. doi: 10.1123/pes.24.1.113. PubMed DOI
Sandercock G.R., Lobelo F., Correa-Bautista J.E., Tovar G., Cohen D.D., Knies G., Ramírez-Vélez R. The Relationship between Socioeconomic Status, Family Income, and Measures of Muscular and Cardiorespiratory Fitness in Colombian Schoolchildren. J. Pediatr. 2017;185:81–87.e2. doi: 10.1016/j.jpeds.2016.12.058. PubMed DOI
Haro I.M.-D., Mora-Gonzalez J., Cadenas-Sanchez C., Borras P.A., Benito P.J., Chiva-Bartoll O., Torrijos-Niño C., Samaniego-Sánchez C., Quesada-Granados J.J., Sánchez-Delgado A., et al. Higher socioeconomic status is related to healthier levels of fatness and fitness already at 3 to 5 years of age: The PREFIT project. J. Sports Sci. 2019;37:1327–1337. doi: 10.1080/02640414.2018.1558509. PubMed DOI
Wolfe A.M., Lee J.A., Laurson K.R. Socioeconomic status and physical fitness in youth: Findings from the NHANES National Youth Fitness Survey. J. Sports Sci. 2020;38:534–541. doi: 10.1080/02640414.2020.1713688. PubMed DOI
Guedes D.P., Neto J.M., Lopes V.P., Silva A. Health-Related Physical Fitness Is Associated with Selected Sociodemographic and Behavioral Factors in Brazilian School Children. J. Phys. Act. Health. 2012;9:473–480. doi: 10.1123/jpah.9.4.473. PubMed DOI
Macdonald M., McGuire C., Havighurst R.J. Leisure Activities and the Socioeconomic Status of Children. Am. J. Sociol. 1949;54:505–519. doi: 10.1086/220414. DOI
Powell L.M., Slater S., Chaloupka F.J., Harper D. Availability of Physical Activity-Related Facilities and Neighbourhood Demographic and Socioeconomic Charateristics: A National Study. Am. J. Public Health. 2006;96:1676–1680. doi: 10.2105/AJPH.2005.065573. PubMed DOI PMC
Micklesfield L., Pedro T., Twine R., Kinsman J., Pettifor J., Tollman S., Kahn K., Norris S. Physical activity patterns and determinants in rural South African adolescents. J. Sci. Med. Sport. 2012;15:S251. doi: 10.1016/j.jsams.2012.11.610. DOI
Jayanthi N.A., Holt J.D.B., Labella C.R., Dugas L.R. Socioeconomic Factors for Sports Specialization and Injury in Youth Athletes. Sports Health. 2018;10:303–310. doi: 10.1177/1941738118778510. PubMed DOI PMC
Lennox A., Pienaar A., Wilders C. Physical fitness and the physical activity status of 15-year-old adolescents in a semi-urban community. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2008;30:59–73. doi: 10.4314/sajrs.v30i1.25983. DOI
Bürgi R., Tomatis L., Murer K., de Bruin E.D. Spatial physical activity patterns among primary school children living in neighbourhoods of varying socioeconomic status a cross-sectional study using accelerometery and Global Positioning System. BMC Public Health. 2016;16:1–12. doi: 10.1186/s12889-016-2954-8. PubMed DOI PMC
Ginsburg K.R., the Committee on Communications. the Committee on Psychosocial Aspects of Child and Family Health The Importance of Play in Promoting Healthy Child Development and Maintaining Strong Parent-Child Bonds. Pediatrics. 2007;119:182–191. doi: 10.1542/peds.2006-2697. PubMed DOI
Masters R.S., Maxwell J.P. Skill Acquisition in Sport. Routledge; Milton Park, UK: 2004. Implicit motor learning, reinvestment and movement disruption: What you don’t know won’t hurt you; pp. 231–252.
Kal E., Prosée R., Winters M., Van Der Kamp J. Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review. PLoS ONE. 2018;13:e0203591. doi: 10.1371/journal.pone.0203591. PubMed DOI PMC
Veraksa A., Aires J.Q., Leonov S., Musálek M. Vygotsky’s Theory in Early Childhood Education and Research. Routledge; Milton Park, UK: 2018. The Vygotskian approach in physical education for early years; pp. 179–190.
Ponthieux N.A., Barker D.G. Relationship between Socioeconomic Status and Physical Fitness Measures. Res. Quarterly. Am. Assoc. Health Phys. Educ. Recreat. 1965;36:464–472. doi: 10.1080/10671188.1965.10614720. PubMed DOI
Pavón D.J. Socioeconomic status influences physical fitness in European adolescents independently of body fat and physical activity: The HELENA Study. Nutr. Hosp. 2010;25:311–316. PubMed
Coe D.P., Peterson T., Blair C., Schutten M.C., Peddie H. Physical Fitness, Academic Achievement, and Socioeconomic Status in School-Aged Youth. J. Sch. Health. 2013;83:500–507. doi: 10.1111/josh.12058. PubMed DOI
Stastny P., Lehnert M., Croix M.D.S., Petr M., Svoboda Z., Maixnerova E., Varekova R., Botek M., Petrek M., Kocourkova L., et al. Effect of COL5A1, GDF5, and PPARA Genes on a Movement Screen and Neuromuscular Performance in Adolescent Team Sport Athletes. J. Strength Cond. Res. 2019;33:2057–2065. doi: 10.1519/JSC.0000000000003142. PubMed DOI
Chan T.-F., Poon A., Basu A., Addleman N.R., Chen J., Phong A., Byers P.H., Klein T.E., Kwok P.-Y. Natural variation in four human collagen genes across an ethnically diverse population. Genomics. 2008;91:307–314. doi: 10.1016/j.ygeno.2007.12.008. PubMed DOI PMC
Adamo K.B., Sheel A.W., Onywera V., Waudo J., Boit M., Tremblay M.S. Child obesity and fitness levels among Kenyan and Canadian children from urban and rural environments: A KIDS-CAN Research Alliance Study. Pediatr. Obes. 2011;6:e225–e232. doi: 10.3109/17477166.2010.543683. PubMed DOI
Prista A., Maia J.A.R., Damasceno A., Beunen G. Anthropometric indicators of nutritional status: Implications for fitness, activity, and health in school-age children and adolescents from Maputo, Mozambique. Am. J. Clin. Nutr. 2003;77:952–959. doi: 10.1093/ajcn/77.4.952. PubMed DOI
Tompsett C., Sanders R., Taylor C., Cobley S. Pedagogical Approaches to and Effects of Fundamental Movement Skill Interventions on Health Outcomes: A Systematic Review. Sports Med. 2017;47:1795–1819. doi: 10.1007/s40279-017-0697-z. PubMed DOI
Katzmarzyk P., Malina R., Beunen G. The contribution of biological maturation to the strength and motor fitness of children. Ann. Hum. Biol. 1997;24:493–505. doi: 10.1080/03014469700005262. PubMed DOI
Malina R.M., Bouchard C., Bar-Or O. Growth, Maturation, and Physical Activity. Human Kinetics; Champaign, IL, USA: 2004.