Galectin-3 as an independent prognostic factor after heart transplantation
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem
PubMed
35029311
DOI
10.1111/ctr.14592
Knihovny.cz E-zdroje
- Klíčová slova
- biomarker, patient survival, risk assessment/risk stratification,
- MeSH
- galektin 3 * MeSH
- galektiny MeSH
- krevní proteiny MeSH
- lidé MeSH
- mortalita * MeSH
- prognóza MeSH
- prospektivní studie MeSH
- srdeční selhání * diagnóza MeSH
- transplantace srdce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- galektin 3 * MeSH
- galektiny MeSH
- krevní proteiny MeSH
- LGALS3 protein, human MeSH Prohlížeč
BACKGROUND: Galectin-3 (GAL3) is linked to the prognosis of patients with heart failure and after heart transplantation (HTx). We assessed the prognostic role of GAL3 in a long-term follow-up after HTx. METHODS: HTx patients (N = 121) were evaluated in a single-center, noninterventional, prospective, observational study. The median follow-up was 96 months (2942 days, interquartile range (IQR) 2408-3264 days), and 40 patients died. GAL3 was measured before HTx, +10 days after HTx, and during the first posttransplant year. Survival analysis (all-cause mortality) was performed with adjustments for clinical and laboratory variables. RESULTS: The median pretransplant GAL3 level was 18.0 μg/L (IQR 14.0-25.9), and higher values were associated with older age, worse kidney function, left ventricular assist device use before HTx, a higher IMPACT score, and mortality. Increased pretransplant GAL3 predicted shorter survival time (HR 2.05, 95% CI 1.09-3.85, p < .05). Similar prognostic power had GAL3 on the 10th posttransplant day (HR 2.03, 95% CI 1.08-3.82, p < .05). GAL3 was an independent predictor of death after adjustment for clinical variables (age, infection, diabetes, smoking, IMPACT score, and troponin). CONCLUSIONS: GAL3 was significantly associated with all-cause mortality after adjusting for clinical and laboratory variables and may serve as an additional prognostic biomarker.
3rd Faculty of Medicine Charles University Prague Czech Republic
Heart Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Díaz-Alvarez L, Ortega E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm. 2017;2017:9247574.
Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in cardiovascular diseases. Int J Mol Sci. 2020;21:9232.
van Kimmenade RR, Januzzi JL Jr, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217-1224.
Felker GM, Fiuzat M, Shaw LK, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012;5:72-78.
Rebholz CM, Selvin E, Liang M, et al. Plasma galectin-3 levels are associated with the risk of incident chronic kidney disease. Kidney Int. 2018;93:252-259.
Aguilar D, Sun C, Hoogeveen RC, et al. Levels and change in galectin-3 and association with cardiovascular events: the ARIC study. J Am Heart Assoc. 2020;9:e015405.
van der Velde AR, Gullestad L, Ueland T, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6:219-226.
Ghorbani A, Bhambhani V, Christenson RH, et al. Longitudinal change in galectin-3 and incident cardiovascular outcomes. J Am Coll Cardiol. 2018;72:3246-3254.
Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249-1256.
Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013;15:511-518.
de Boer RA, van Veldhuisen DJ, Gansevoort RT, et al. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med. 2012;272:55-64.
McCullough PA, Olobatoke A, Vanhecke TE. Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med. 2011;12:200-210. Erratum in: Rev Cardiovasc Med. 2012;13:e52.
Lau ES, Liu E, Paniagua SM, et al. Galectin-3 inhibition with modified citrus pectin in hypertension. JACC Basic Transl Sci. 2021;6:12-21.
Chalasani N, Abdelmalek MF, Garcia-Tsao G, et al. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology. 2020;158:1334-1345.
Slack RJ, Mills R, Mackinnon AC. The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int J Biochem Cell Biol. 2021;130:105881.
Al Attar A, Antaramian A, Noureddin M. Review of galectin-3 inhibitors in the treatment of nonalcoholic steatohepatitis. Expert Rev Clin Pharmacol. 2021;14:457-464.
Franeková J, Hošková L. The role of timely measurement of galectin-3, NT-proBNP, cystatin C, and hsTnT in predicting prognosis and heart function after heart transplantation. Clin Chem Lab Med. 2016;54:339-344.
Hošková L, Franeková J, Málek I, et al. Comparison of cystatin C and NGAL in early diagnosis of acute kidney injury after heart transplantation. Ann Transplant. 2016;21:329-335.
Roques F, Nashef SA, Michel P, et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur J Cardiothorac Surg. 1999;15:816-822. discussion 822-823.
Roques F, Michel P, Goldstone AR, Nashef SA. The logistic EuroSCORE. Eur Heart J. 2003;24:881-882.
Weiss ES, Allen JG, Arnaoutakis GJ, et al. Creation of a quantitative recipient risk index for mortality prediction after cardiac transplantation (IMPACT). Ann Thorac Surg. 2011;92:914-921. discussion 921-922.
Kilic A, Allen JG, Weiss ES. Validation of the United States-derived Index for Mortality Prediction After Cardiac Transplantation (IMPACT) using international registry data. J Heart Lung Transplant. 2013;32:492-498.
Gaze DC, Prante C, Dreier J, et al. Analytical evaluation of the automated galectin-3 assay on the Abbott ARCHITECT immunoassay instruments. Clin Chem Lab Med. 2014;52:919-926.
Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48:1503-1510.
Nashef SA, Roques F, Michel P, Gauducheau E, Lemeshow S, Salamon R. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg. 1999;16:9-13.
Hickey GL, Grant SW, Murphy GJ, et al. Dynamic trends in cardiac surgery: why the logistic EuroSCORE is no longer suitable for contemporary cardiac surgery and implications for future risk models. Eur J Cardiothorac Surg. 2013;43:1146-1152.
Nashef SA, Roques F, Sharples LD, et al. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41:734-744. discussion 744-745.
Kilic A, Allen JG, Arnaoutakis GJ, et al. Adult-derived Index for Mortality Prediction After Cardiac Transplantation (IMPACT) risk score predicts short-term mortality after pediatric heart transplantation. Ann Thorac Surg. 2012;93:1228-1234. discussion 1234-1235.
Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-e239.
Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70:776-803.
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891-975.
Van der Meer P, Gaggin HK, Dec GW. ACC/AHA versus ESC guidelines on heart failure: JACC guideline comparison. J Am Coll Cardiol. 2019;73:2756-2768.
Trippel TD, Mende M, Düngen HD, et al. The diagnostic and prognostic value of galectin-3 in patients at risk for heart failure with preserved ejection fraction: results from the DIAST-CHF study. ESC Heart Fail. 2021;8:829-841.
Patel DM, Thiessen-Philbrook H, Brown JR, et al. Association of plasma-soluble ST2 and galectin-3 with cardiovascular events and mortality following cardiac surgery. Am Heart J. 2020;220:253-263.
Coromilas E, Que-Xu EC, Moore D, et al. Dynamics and prognostic role of galectin-3 in patients with advanced heart failure, during left ventricular assist device support and following heart transplantation. BMC Cardiovasc Disord. 2016;16:138.
Suárez-Fuentetaja N, Barge-Caballero E, Bayés-Genís A, et al. Circulating galectin-3 following heart transplant: long-term dynamics and prognostic value. Rev Esp Cardiol (Engl Ed). 2019;72:899-906.
Beiras-Fernandez A, Weis F, Rothkopf J, et al. Local expression of myocardial galectin-3 does not correlate with its serum levels in patients undergoing heart transplantation. Ann Transplant. 2013;18:643-650.
Grupper A, Nativi-Nicolau J, Maleszewski JJ, et al. Circulating galectin-3 levels are persistently elevated after heart transplantation and are associated with renal dysfunction. JACC Heart Fail. 2016;4:847-856.
Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121-3128.
Lok DJ, Van Der Meer P, de la Porte PW, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99:323-328.
McCullough P, de Boer RA, Edelmann F, Lewis CM, Maisel AS. Utilization of galectin-3 in case management across the spectrum of heart failure. Rev Cardiovasc Med. 2014;15:197-207.
McCullough PA. Practical experience using galectin-3 in heart failure. Clin Chem Lab Med. 2014;52:1425-1431.
Asleh R, Enriquez-Sarano M, Jaffe AS, et al. Galectin-3 levels and outcomes after myocardial infarction: a population-based study. J Am Coll Cardiol. 2019;73:2286-2295.
de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60-68.
Christenson RH, Duh SH, Wu AH, et al. Multi-center determination of galectin-3 assay performance characteristics: anatomy of a novel assay for use in heart failure. Clin Biochem. 2010;43:683-690.
Meijers WC, van der Velde AR, de Boer RA. The ARCHITECT galectin-3 assay: comparison with other automated and manual assays for the measurement of circulating galectin-3 levels in heart failure. Expert Rev Mol Diagn. 2014;14:257-266.
Krintus M, Kozinski M, Fabiszak T, Kubica J, Panteghini M, Sypniewska G. Establishing reference intervals for galectin-3 concentrations in serum requires careful consideration of its biological determinants. Clin Biochem. 2017;50:599-604.