A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato
Jazyk angličtina Země Belgie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
    PubMed
          
           35031492
           
          
          
    DOI
          
           10.1016/j.ymben.2022.01.004
           
          
          
      PII:  S1096-7176(22)00010-6
  
    Knihovny.cz E-zdroje
    
  
              
      
- Klíčová slova
- Abiotic stress tolerance, Apocarotenoids, Biomass and yield, Carotenoids, Metabolic engineering, Metabolites and lipids, Phytohormones,
- MeSH
- biomasa MeSH
- biosyntetické dráhy genetika MeSH
- fyziologický stres MeSH
- karotenoidy metabolismus MeSH
- Solanum lycopersicum * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- karotenoidy MeSH
Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.
Aix Marseille University CEA CNRS UMR7265 BIAM CEA Cadarache F 13108 Saint Paul lez Durance France
Institute for Plant Molecular and Cell Biology UPV CSIC 46022 Valencia Spain
Max Planck Institut für Molekulare Pflanzenphysiologie Am Mühlenberg1 D 14476 Potsdam Golm Germany
Citace poskytuje Crossref.org
