Antibacterial Nanoparticles with Natural Photosensitizers Extracted from Spinach Leaves
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35036813
PubMed Central
PMC8756605
DOI
10.1021/acsomega.1c06229
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We prepared antibacterial polystyrene nanoparticles (NPs) with natural photosensitizers from chlorophyll (Chl) extract via a simple nanoprecipitation method using the same solvent for dissolution of the polystyrene matrix and extraction of Chls from spinach leaves. A high photo-oxidation and antibacterial effect was demonstrated on Escherichia coli and was based on the photogeneration of singlet oxygen O2(1Δg), which was directly monitored by NIR luminescence measurements and indirectly verified using a chemical trap. The photoactivity of NPs was triggered by visible light, with enhanced red absorption by Chls. To reduce the quenching effect of carotenoids (β-carotene, lutein, etc.) in the Chl extract, diluted and/or preirradiated samples, in which the photo-oxidized carotenoids lose their quenching effect, were used for preparation of the NPs. For enhanced photo-oxidation and antibacterial effects, a sulfonated polystyrene matrix was used for preparation of a stable dispersion of sulfonated NPs, with the quenching effect of carotenoids being suppressed.
Zobrazit více v PubMed
Kotkowiak M.; Dudkowiak A.; Fiedor L. Intrinsic Photoprotective Mechanisms in Chlorophylls. Angew. Chem., Int. Ed. 2017, 56, 10457–10461. 10.1002/anie.201705357. PubMed DOI
Vinklárek I. S.; Bornemann T. L. V.; Lokstein H.; Hofmann E.; Alster J.; Pšenčík J. Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates. J. Phys. Chem. B 2018, 122, 8834–8845. 10.1021/acs.jpcb.8b06751. PubMed DOI
Schilling W.; Zhang Y.; Sahoo P. K.; Sarkar S. K.; Gandhi S.; Roesky H. W.; Das S. Nature inspired singlet oxygen generation to access α-amino carbonyl compounds via 1,2-acyl migration. Green Chem. 2021, 23, 379–387. 10.1039/d0gc03555f. DOI
Krieger-Liszkay A. Singlet oxygen production in photosynthesis. J. Exp. Bot. 2004, 56, 337–346. 10.1093/jxb/erh237. PubMed DOI
Dogra V.; Kim C. Singlet Oxygen Metabolism: From Genesis to Signaling. Front. Plant Sci. 2019, 10, 1640.10.3389/fpls.2019.01640. PubMed DOI PMC
Hamblin M. R.; Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease?. Photochem. Photobiol. Sci. 2004, 3, 436–450. 10.1039/b311900a. PubMed DOI PMC
Maisch T.; Baier J.; Franz B.; Maier M.; Landthaler M.; Szeimies R.-M.; Bäumler W. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. U.S.A 2007, 104, 7223–7228. 10.1073/pnas.0611328104. PubMed DOI PMC
Agostinis P.; Berg K.; Cengel K. A.; Foster T. H.; Girotti A. W.; Gollnick S. O.; Hahn S. M.; Hamblin M. R.; Juzeniene A.; Kessel D.; Korbelik M.; Moan J.; Mroz P.; Nowis D.; Piette J.; Wilson B. C.; Golab J. Photodynamic therapy of cancer: an update. Ca-Cancer J. Clin. 2011, 61, 250–281. 10.3322/caac.20114. PubMed DOI PMC
Lo P.-C.; Rodríguez-Morgade M. S.; Pandey R. K.; Ng D. K. P.; Torres T.; Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020, 49, 1041–1056. 10.1039/c9cs00129h. PubMed DOI
Campanholi K. d. S. S.; Braga G.; da Silva J. B.; da Rocha N. L.; de Francisco L. M. B.; de Oliveira É. L.; Bruschi M. L.; de Castro-Hoshino L. V.; Sato F.; Hioka N.; Caetano W. Biomedical Platform Development of a Chlorophyll-Based Extract for Topic Photodynamic Therapy: Mechanical and Spectroscopic Properties. Langmuir 2018, 34, 8230–8244. 10.1021/acs.langmuir.8b00658. PubMed DOI
Wilkinson F.; Helman W. P.; Ross A. B. Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. J. Phys. Chem. Ref. Data 1993, 22, 113–262. 10.1063/1.555934. DOI
Redmond R. W.; Gamlin J. N. A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules. Photochem. Photobiol. 1999, 70, 391–475. 10.1111/j.1751-1097.1999.tb08240.x. PubMed DOI
Tamura H.; Ishikita H. Quenching of Singlet Oxygen by Carotenoids via Ultrafast Superexchange Dynamics. J. Phys. Chem. A 2020, 124, 5081–5088. 10.1021/acs.jpca.0c02228. PubMed DOI
Demmig-Adams B.; Gilmore A. M.; Adams W. W. III In vivo functions of carotenoids in higher plants. FASEB J. 1996, 10, 403–412. 10.1096/fasebj.10.4.8647339. PubMed DOI
Croce R.; Van Amerongen H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 2014, 10, 492–501. 10.1038/nchembio.1555. PubMed DOI
Demmig-Adams B. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta Bioenerg. 1990, 1020, 1–24. 10.1016/0005-2728(90)90088-l. DOI
Ramel F.; Birtic S.; Cuiné S.; Triantaphylidès C.; Ravanat J.-L.; Havaux M. Chemical Quenching of Singlet Oxygen by Carotenoids in Plants. Plant Physiol. 2012, 158, 1267–1278. 10.1104/pp.111.182394. PubMed DOI PMC
Peterman E.; Monshouwer R.; van Stokkum I. H. M.; van Grondelle R.; van Amerongen H. Ultrafast singlet excitation transfer from carotenoids to chlorophylls via different pathways in light-harvesting complex II of higher plants. Chem. Phys. Lett. 1997, 264, 279–284. 10.1016/s0009-2614(96)01334-6. DOI
Barazzouk S.; Bekalé L.; Hotchandani S. Enhanced photostability of chlorophyll-a using gold nanoparticles as an efficient photoprotector. J. Mater. Chem. 2012, 22, 25316–25324. 10.1039/c2jm33681b. DOI
Bobbio P. A.; Guedes M. C. Stability of copper and magnesium chlorophylls. Food Chem. 1990, 36, 165–168. 10.1016/0308-8146(90)90051-5. DOI
Küpper H.; Dědic R.; Svoboda A.; Hála J.; Kroneck P. M. H. Kinetics and efficiency of excitation energy transfer from chlorophylls, their heavy metal-substituted derivatives, and pheophytins to singlet oxygen. Biochim. Biophys. Acta, Gen. Subj. 2002, 1572, 107–113. 10.1016/s0304-4165(02)00284-2. PubMed DOI
Uliana M. P.; Pires L.; Pratavieira S.; Brocksom T. J.; de Oliveira K. T.; Bagnato V. S.; Kurachi C. Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents. Photochem. Photobiol. Sci. 2014, 13, 1137–1145. 10.1039/c3pp50376c. PubMed DOI
Ryberg E. C.; Knight J.; Kim J.-H. Farm-to-Tap Water Treatment: Naturally-Sourced Photosensitizers for Enhanced Solar Disinfection of Drinking Water. ACS ES&T Eng. 2021, 1, 86–99. 10.1021/acsestengg.0c00067. DOI
Lim E.-K.; Kim T.; Paik S.; Haam S.; Huh Y.-M.; Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem. Rev. 2015, 115, 327–394. 10.1021/cr300213b. PubMed DOI
Henke P.; Dolanský J.; Kubát P.; Mosinger J. Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds. ACS Appl. Mater. Interfaces 2020, 12, 18792–18802. 10.1021/acsami.9b23104. PubMed DOI
Kubát P.; Henke P.; Raya R. K.; Štěpánek M.; Mosinger J. Polystyrene and Poly(ethylene glycol)-b-Poly(ε-caprolactone) Nanoparticles with Porphyrins: Structure, Size, and Photooxidation Properties. Langmuir 2020, 36, 302–310. 10.1021/acs.langmuir.9b03468. PubMed DOI
Laxminarayan R.; Duse A.; Wattal C.; Zaidi A. K. M.; Wertheim H. F. L.; Sumpradit N.; Vlieghe E.; Hara G. L.; Gould I. M.; Goossens H.; Greko C.; So A. D.; Bigdeli M.; Tomson G.; Woodhouse W.; Ombaka E.; Peralta A. Q.; Qamar F. N.; Mir F.; Kariuki S.; Bhutta Z. A.; Coates A.; Bergstrom R.; Wright G. D.; Brown E. D.; Cars O. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. 10.1016/s1473-3099(13)70318-9. PubMed DOI
Wolfbeis O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768. 10.1039/c4cs00392f. PubMed DOI
Gerola A. P.; Costa P. F. A.; de Morais F. A. P.; Tsubone T. M.; Caleare A. O.; Nakamura C. V.; Brunaldi K.; Caetano W.; Kimura E.; Hioka N. Liposome and polymeric micelle-based delivery systems for chlorophylls: Photodamage effects on Staphylococcus aureus. Colloids Surf., B 2019, 177, 487–495. 10.1016/j.colsurfb.2019.02.032. PubMed DOI
Costa P. F. A.; Gerola A. P.; Pereira P. C. S.; Souza B. S.; Caetano W.; Fiedler H. D.; Nome F.; Hioka N. Chlorophylls B formulated in nanostructured colloidal solutions: Interaction, spectroscopic, and photophysical studies. J. Mol. Liq. 2019, 274, 393–401. 10.1016/j.molliq.2018.10.143. DOI
Falco W. F.; Botero E. R.; Falcão E. A.; Santiago E. F.; Bagnato V. S.; Caires A. R. L. In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J. Photochem. Photobiol., A 2011, 225, 65–71. 10.1016/j.jphotochem.2011.09.027. DOI
Falco W. F.; Queiroz A. M.; Fernandes J.; Botero E. R.; Falcão E. A.; Guimarães F. E. G.; M’Peko J.-C.; Oliveira S. L.; Colbeck I.; Caires A. R. L. Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching. J. Photochem. Photobiol., A 2015, 299, 203–209. 10.1016/j.jphotochem.2014.12.001. DOI
Cogdell R. J.; Osmond C. B.; Foyer C. H.; Bock G.; Howard T. D.; Bittl R.; Schlodder E.; Geisenheimer I.; Lubitz W. How carotenoids protect bacterial photosynthesis. Philos. Trans. R. Soc., B 2000, 355, 1345–1349. 10.1098/rstb.2000.0696. PubMed DOI PMC
Zielewicz W.; Wróbel B.; Niedbała G. Quantification of Chlorophyll and Carotene Pigments Content in Mountain Melick (Melica nutans L.) in Relation to Edaphic Variables. Forests 2020, 11, 1197.10.3390/f11111197. DOI
Kaestner L.; Cesson M.; Kassab K.; Christensen T.; Edminson P. D.; Cook M. J.; Chambrier I.; Jori G. Zinc octa-n-alkyl phthalocyanines in photodynamic therapy: Photophysical properties, accumulation and apoptosis in cell cultures, studies in erythrocytes and topical application to Balb/c mice skin. Photochem. Photobiol. Sci. 2003, 2, 660–667. 10.1039/b211348a. PubMed DOI
Sagadevan A.; Hwang K. C.; Su M.-D. Singlet oxygen-mediated selective C-H bond hydroperoxidation of ethereal hydrocarbons. Nat. Commun. 2017, 8, 1812.10.1038/s41467-017-01906-5. PubMed DOI PMC
Mordi R. C.; Ademosun O. T.; Ajanaku C. O.; Olanrewaju I. O.; Walton J. C. Free Radical Mediated Oxidative Degradation of Carotenes and Xanthophylls. Molecules 2020, 25, 1038.10.3390/molecules25051038. PubMed DOI PMC
Edge R.; Truscott T. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids-A Review. Antioxidants 2018, 7, 5.10.3390/antiox7010005. PubMed DOI PMC
Martins M.; Albuquerque C. M.; Pereira C. F.; Coutinho J. A. P.; Neves M. G. P. M. S.; G. A. Pinto D. C.; Faustino M. A. F.; Ventura S. P. M.; Ventura S. P. M. Recovery of Chlorophyll a Derivative from Spirulina maxima: Its Purification and Photosensitizing Potential. ACS Sustain. Chem. Eng. 2021, 9, 1772–1780. 10.1021/acssuschemeng.0c07880. DOI
Hartzler D. A.; Niedzwiedzki D. M.; Bryant D. A.; Blankenship R. E.; Pushkar Y.; Savikhin S. Triplet Excited State Energies and Phosphorescence Spectra of (Bacterio)Chlorophylls. J. Phys. Chem. B 2014, 118, 7221–7232. 10.1021/jp500539w. PubMed DOI
Henke P.; Kirakci K.; Kubát P.; Fraiberk M.; Forstová J.; Mosinger J. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Appl. Mater. Interfaces 2016, 8, 25127–25136. 10.1021/acsami.6b08234. PubMed DOI
Poulsen L.; Ogilby P. R. Oxygen Diffusion in Glassy Polymer Films:Effects of Other Gases and Changes in Pressure. J. Phys .Chem .A 2000, 104, 2573–2580. 10.1021/jp993449r. DOI
Jesenská S.; Plíštil L.; Kubát P.; Lang K.; Brožová L.; Popelka Š.; Szatmáry L.; Mosinger J. Antibacterial nanofiber materials activated by light. J. Biomed. Mater. Res., Part A 2011, 99, 676–683. 10.1002/jbm.a.33218. PubMed DOI
Kubát P.; Henke P.; Berzediová V.; Štěpánek M.; Lang K.; Mosinger J. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing. ACS Appl. Mater. Interfaces 2017, 9, 36229–36238. 10.1021/acsami.7b12009. PubMed DOI
Mosinger J.; Mosinger B. Photodynamic sensitizers assay: rapid and sensitive iodometric measurement. Experientia 1995, 51, 106–109. 10.1007/bf01929349. PubMed DOI
Bregnhøj M.; Dichmann L.; McLoughlin C. K.; Westberg M.; Ogilby P. R. Uric Acid: A Less-than-Perfect Probe for Singlet Oxygen. Photochem. Photobiol. 2019, 95, 202–210. 10.1111/php.12971. PubMed DOI
Li M. Y.; Cline C. S.; Koker E. B.; Carmichael H. H.; Chignell C. F.; Bilski P. Quenching of Singlet Molecular Oxygen (1O2) by Azide Anion in Solvent Mixtures¶. Photochem. Photobiol. 2001, 74, 760–764. 10.1562/0031-8655(2001)074<0760:qosmoo>2.0.co;2. PubMed DOI
Leichnitz S.; Heinrich J.; Kulak N. A fluorescence assay for the detection of hydrogen peroxide and hydroxyl radicals generated by metallonucleases. Chem. Commun. 2018, 54, 13411–13414. 10.1039/c8cc06996d. PubMed DOI
Lemp E.; Zanocco A. L.. Singlet Oxygen: Applications in Biosciences and Nanosciences; The Royal Society of Chemistry, 2016; Vol. Volume 2Vol. 2, pp 83–101.Chapter 29. Singlet Oxygen Chemical Acceptors 10.1039/9781782626992-00083 DOI
Henke P.; Lang K.; Kubát P.; Sýkora J.; Šlouf M.; Mosinger J. Polystyrene Nanofiber Materials Modified with an Externally Bound Porphyrin Photosensitizer. ACS Appl. Mater. Interfaces 2013, 5, 3776–3783. 10.1021/am4004057. PubMed DOI
Reimers J. R.; Cai Z.-L.; Kobayashi R.; Rätsep M.; Freiberg A.; Krausz E. Assignment of the Q-Bands of the Chlorophylls: Coherence Loss via Qx – Qy Mixing. Sci. Rep. 2013, 3, 2761.10.1038/srep02761. PubMed DOI PMC
Iida S.; Ohkubo Y.; Yamamoto Y.; Fujisawa A. Parabanic acid is the singlet oxygen specific oxidation product of uric acid. J. Clin. Biochem. Nutr. 2017, 61, 169–175. 10.3164/jcbn.17-24. PubMed DOI PMC
Fischer F.; Graschew G.; Sinn H.-J.; Maier-Borst W.; Lorenz W. J.; Schlag P. M. A chemical dosimeter for the determination of the photodynamic activity of photosensitizers. Clin. Chim. Acta 1998, 274, 89–104. 10.1016/s0009-8981(98)00045-x. PubMed DOI