Ecological niche divergence between extant and glacial land snail populations explained
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
P504/20-18827S
Grantová Agentura České Republiky
P504/20-18827S
Grantová Agentura České Republiky
P504/20-18827S
Grantová Agentura České Republiky
P504/20-18827S
Grantová Agentura České Republiky
PubMed
35039536
PubMed Central
PMC8763904
DOI
10.1038/s41598-021-04645-2
PII: 10.1038/s41598-021-04645-2
Knihovny.cz E-resources
- MeSH
- Ecosystem * MeSH
- Snails * MeSH
- Climate Change MeSH
- Wetlands MeSH
- Grassland MeSH
- Climate MeSH
- Population Dynamics * MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Iceland MeSH
The presence of Last Glacial Maximum (LGM) biotic communities without modern counterparts is well known. It is particularly evident in central European fossil LGM land snails whose assemblages represent an odd mix of species that are currently limited to either xeric or wetland habitats. Here we document a genetically verified discovery of the modern calcareous wetland species Pupilla alpicola on Iceland, where it is limited to dry grasslands. This species also represents a common European LGM fossil, and its new records from Iceland help explain puzzling shifts of some glacial land snails of xeric grassland habitats to open wetlands today. Similarities between the climates of modern Iceland and LGM Eurasia suggest that this species did not become limited to wetlands in continental Europe until after the Late Pleistocene-Holocene climate transition. These results are a strong reminder that assumptions of ecological uniformity must be questioned and that the quality and robustness of palaeoecological reconstructions is dependent upon adequate knowledge of the full autecological range of species over time.
See more in PubMed
Nehring, A. Über Tundren und Steppen der Jetzt- und Vorzeit, mit besonderer Berücksichtigung ihrer Fauna (F. Dummler, 1890).
Chytrý M, et al. A modern analogue of the Pleistocene steppe-tundra in southern Siberia. Boreas. 2019;48:36–56. doi: 10.1111/bor.12338. DOI
Graham R. Late Wisconsin mammalian faunas and environmental gradients of the eastern United States. Paleobiology. 1976;2:343–350. doi: 10.1017/S0094837300004978. DOI
Webb TIII. The appearance and disappearance of major vegetational assemblages: Long-term vegetational dynamics in eastern North America. Vegetatio. 1987;69:177–187. doi: 10.1007/BF00038699. DOI
Frest TJ, Dickson JR. Land snails (Pleistocene-recent) of the Loess Hills: A preliminary survey. Proc. Iowa Acad. Sci. 1986;93:130–157.
Nekola JC. Paleorefugia and neorefugia: The influence of colonization history on community pattern and process. Ecology. 1999;80:2459–2473. doi: 10.1890/0012-9658(1999)080[2459:PANTIO]2.0.CO;2. DOI
Magri D, et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol. 2006;17:199–221. doi: 10.1111/j.1469-8137.2006.01740.x. PubMed DOI
Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 2006;15:4261–4293. doi: 10.1111/j.1365-294X.2006.03061.x. PubMed DOI
Graham R. Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. Paleontol. Soc. Papers. 2005;11:141–158. doi: 10.1017/S1089332600001297. DOI
Davis, M. B. Climatic instability, time lags, and community disequilibrium. In Community Ecology (eds Diamond, J. & Case, T. J.) 269–284 (Harper & Row, 1984).
Baker RG, et al. A full-glacial biota from southeastern Iowa USA. J. Quat. Sci. 1986;1:91–107. doi: 10.1002/jqs.3390010202. DOI
Baker RG, Sullivan AE, Hallberg GR, Horton DG. Vegetational changes in western Illinois during the onset of late Wisconsinan glaciation. Ecology. 1989;70:1363–1376. doi: 10.2307/1938196. DOI
Baker RG, et al. Mid-Wisconsinan environments on the eastern Great Plains. Quat. Sci. Rev. 2009;28:873–889. doi: 10.1016/j.quascirev.2008.12.021. DOI
Scott GH. Uniformitarianism, the uniformity of nature, and paleoecology. N. Zeal. J. Geol. Geophys. 1963;6:510–527. doi: 10.1080/00288306.1963.10420063. DOI
Horsák M, et al. Snail faunas in the Southern Ural forests and their relations to vegetation: An analogue of the Early Holocene assemblages of Central Europe? J. Molluscan Stud. 2010;76:1–10. doi: 10.1093/mollus/eyp039. DOI
Ložek, V. Quartärmollusken der Tschechoslowakei (Nakladatelství Československé akademie věd, 1964).
Horsák M, et al. European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia. Boreas. 2015;44:638–657. doi: 10.1111/bor.12133. DOI
Moine O. Weichselian Upper Pleniglacial environmental variability in north-western Europe reconstructed from terrestrial mollusc faunas and its relationship with the presence/absence of human settlements. Quat. Int. 2014;337:90–113. doi: 10.1016/j.quaint.2014.02.030. DOI
Hošek J, et al. Middle Pleniglacial pedogenesis on the northwestern edge of the Carpathian Basin: A multidisciplinary investigation of the Bíňa pedo-sedimentary section SW Slovakia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017;487:321–339. doi: 10.1016/j.palaeo.2017.09.017. DOI
Horsák M, Škodová J, Cernohorsky NH. Ecological and historical determinants of Western Carpathian populations of Pupilla alpicola (Charpentier, 1837) in relation to its present range and conservation. J. Molluscan Stud. 2011;77:248–254. doi: 10.1093/mollus/eyr010. DOI
Nekola JC, Coles FB, Horsák M. Species assignment in Pupilla (Gastropoda: Pulmonata: Pupillidae): Integration of DNA-sequence data and conchology. J. Molluscan Stud. 2015;81:196–216. doi: 10.1093/mollus/eyu083. DOI
Horsák, M., Juřičková, L. & Picka, J. Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics (Kabourek, 2013).
Welter-Schultes, F. W. European non-marine molluscs, a guide for species identification (Planet Poster Editions, 2012).
von Proschwitz, T. Three land-snail species new to the Norwegian fauna: Pupilla pratensis (Clessin, 1871), Vertigo ultimathule von Proschwitz, 2007 and Balea sarsii Philippi, 1847 [= B. heydeni von Maltzan, 1881]. Fauna Norv.30, 13–19 (2010).
Kerney, M. P., Cameron, R. A. D. & Jungbluth, J. H. Die Landschnecken Nord- und Mitteleuropas (Parey Verlag, 1983).
Horsáková V, Nekola JC, Horsák M. When is a “cryptic” species not a cryptic species: A consideration from the Holarctic micro-landsnail genus Euconulus (Gastropoda: Stylommatophora) Mol. Phylogenet. Evol. 2019;132:307–320. doi: 10.1016/j.ympev.2018.12.004. PubMed DOI
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Title PO, Bemmels JB. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography. 2018;41:291–307. doi: 10.1111/ecog.02880. DOI
Phillips SJ, Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography. 2008;31:161–175. doi: 10.1111/j.0906-7590.2008.5203.x. DOI
Haase M, Meng S, Horsák M. Tracking parallel adaptation of shell morphology through geological times in the land snail genus Pupilla (Gastropoda: Stylommatophora: Pupillidae) Zool. J. Linnean. Soc. 2021;191:720–747. doi: 10.1093/zoolinnean/zlaa057. DOI
Ložek V. Molluscan fauna from the loess series of Bohemia and Moravia. Quat. Int. 2001;76–77:141–156. doi: 10.1016/S1040-6182(00)00098-7. DOI
Fordham DA, et al. PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography. 2017;40:1348–1358. doi: 10.1111/ecog.03031. DOI
Mysterud A. The concept of overgrazing and its role in management of large herbivores. Wildlife Biol. 2006;12:129–141. doi: 10.2981/0909-6396(2006)12[129:TCOOAI]2.0.CO;2. DOI
Arnalds, Ó. The soils of Iceland. World Soils Book Series (Springer, 2015).
Horsák, M. et al. Spring water table depth mediates within-site variation of soil temperature in groundwater-fed mires. Hydrol. Process.35, e14293 (2021).
Ložek, V. Zrcadlo minulosti. Česká a slovenská krajina v kvartéru (Dokořán, 2007).
Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds. Quaternary Glaciations—Extent and Chronology, Volume 15 (Elsevier, 2011).