Moderate-intensity exercise training reduces vasorelaxation of mesenteric arteries: role of BKCa channels and nitric oxide
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35043645
PubMed Central
PMC8997679
DOI
10.33549/physiolres.934671
PII: 934671
Knihovny.cz E-zdroje
- MeSH
- arteriae mesentericae * MeSH
- cévní endotel metabolismus MeSH
- kondiční příprava zvířat MeSH
- krysa rodu Rattus MeSH
- nitroprusid farmakologie MeSH
- oxid dusnatý * metabolismus MeSH
- vápníkem aktivované draslíkové kanály s vysokou vodivostí - alfa-podjednotky metabolismus MeSH
- vazodilatace * MeSH
- vazokonstrikce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Kcnma1 protein, rat MeSH Prohlížeč
- nitroprusid MeSH
- oxid dusnatý * MeSH
- vápníkem aktivované draslíkové kanály s vysokou vodivostí - alfa-podjednotky MeSH
Exercise training (ET) is well established to induce vascular adaptations on the metabolically active muscles. These adaptations include increased function of vascular potassium channels and enhanced endothelium-dependent relaxations. However, the available data on the effect of ET on vasculatures that normally constrict during exercise, such as mesenteric arteries (MA), are scarce and not conclusive. Therefore, this study hypothesized that 10 weeks of moderate-intensity ET would result in adaptations towards more vasoconstriction or/and less vasodilatation of MA. Young Fischer 344 rats were randomly assigned to a sedentary group (SED; n=24) or exercise training group (EXE; n=28). The EXE rats underwent a progressive treadmill ET program for 10 weeks. Isometric tensions of small (SED; 252.9+/-29.5 microm, EXE; 248.6+/-34.4 microm) and large (SED; 397.7+/-85.3 microm, EXE; 414.0+/-86.95 microm) MA were recorded in response to cumulative phenylephrine concentrations (PE; 0-30 microM) in the presence and absence of the BKCa channel blocker, Iberiotoxin (100 nM). In another set of experiments, tensions in response to cumulative concentration-response curves of acetylcholine (ACh) or sodium nitroprusside (SNP) were obtained, and pEC50s were compared. Immunoblotting was performed to measure protein expression levels of the BKCa channel subunits and eNOS. ET did not alter the basal tension of small and large MA but significantly increased their responses to PE, and reduced the effect of BKCa channels in opposing the contractile responses to PE without changes in the protein expression level of BKCa subunits. ET also elicited a size-dependent functional adaptations that involved reduced endothelium-independent and endothelium-dependent relaxations. In large MA the sensitivity to SNP was decreased more than in small MA suggesting impaired nitric oxide (NO)-dependent mechanisms within the vascular smooth muscle cells of ET group. Whereas the shift in pEC50 of ACh-induced relaxation of small MA would suggest more effect on the production of NO within the endothelium, which is not changed in large MA of ET group. However, the eNOS protein expression level was not significantly changed between the ET and SED groups. In conclusion, our results indicate an increase in contraction and reduced relaxation of MA after 10 weeks of ET, an adaptation that may help shunt blood flow to metabolically active tissues during acute exercise.
Zobrazit více v PubMed
Perrino C, Gargiulo G, Pironti G, Franzone A, Scudiero L, De Laurentis M, Magliulo F, Ilardi F, Carotenuto G, Schiattarella GG. Cardiovascular effects of treadmill exercise in physiological and pathological preclinical settings. Am J Physiol Circ Physiol. 2011;300:H1983–H1989. doi: 10.1152/ajpheart.00784.2010. PubMed DOI
Thijssen DHJ, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MTE, Green DJ. Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol. 2010;108:845–875. doi: 10.1007/s00421-009-1260-x. PubMed DOI PMC
Shi L, Liu B, Li N, Xue Z, Liu X. Aerobic exercise increases BKCa channel contribution to regulation of mesenteric arterial tone by upregulating β1-subunit. Exp Physiol. 2013;98:326–336. doi: 10.1113/expphysiol.2012.066225. PubMed DOI
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular determinants of BK channel functional diversity and functioning. Physiol Rev. 2017;97:39–87. doi: 10.1152/physrev.00001.2016. PubMed DOI
Dopico AM, Bukiya AN, Jaggar JH. Calcium-and voltage-gated BK channels in vascular smooth muscle. Pflügers Arch J Physiol. 2018;470:1271–1289. doi: 10.1007/s00424-018-2151-y. PubMed DOI PMC
Ets HK, Seow CY, Moreland RS. Sustained contraction in vascular smooth muscle by activation of L-type Ca2+ channels does not involve Ca2+ sensitization or caldesmon. Front Pharmacol. 2016;7:516. doi: 10.3389/fphar.2016.00516. PubMed DOI PMC
Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol. 2001;21:28–38. doi: 10.1161/01.atv.21.1.28. PubMed DOI
Zhang Y, Yu C, Zhang L, Lu N, Shi L. Aerobic exercise of low to moderate intensity corrects unequal changes in BK Ca subunit expression in the mesenteric arteries of spontaneously hypertensive rats. Physiol Res. 2017;66:219–233. doi: 10.33549/physiolres.933407. PubMed DOI
Hilgers RHP, Todd J, JR, Webb RC. Regional heterogeneity in acetylcholine-induced relaxation in rat vascular bed: role of calcium-activated K+ channels. Am J Physiol Circ Physiol. 2006;291:H216–H222. doi: 10.1152/ajpheart.01383.2005. PubMed DOI
Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057. doi: 10.7150/ijbs.7502. PubMed DOI PMC
Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–1086. doi: 10.1152/physrev.00045.2006. PubMed DOI
Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker TA, Tipton KD, Wagenmakers AJM. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol. 2013;591:641–656. doi: 10.1113/jphysiol.2012.239566. PubMed DOI PMC
Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, Escaned J, Koller A, Piek JJ, De Wit C. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36:3134–3146. doi: 10.1093/eurheartj/ehv100. PubMed DOI
Albarwani S, Al-Siyabi S, Baomar H, Hassan MO. Exercise training attenuates ageing-induced BKCa channel downregulation in rat coronary arteries. Exp Physiol. 2010;95:746–755. doi: 10.1113/expphysiol.2009.051250. PubMed DOI
Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH. Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology. 2011;26:132–145. doi: 10.1152/physiol.00052.2010. PubMed DOI PMC
Laughlin MH, Newcomer SC, Bender SB. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol. 2008;104:588–600. doi: 10.1152/japplphysiol.01096.2007. PubMed DOI PMC
Nagashima K, Tokizawa K, Uchida Y, Nakamura-Matsuda M, Lin C-H. Exercise and thermoregulation. J Phys Fit Sport Med. 2012;1:73–82. doi: 10.1152/physiol.00052.2010. DOI
Momken I, Lechêne P, Ventura-Clapier R, Veksler V. Voluntary physical activity alterations in endothelial nitric oxide synthase knockout mice. Am J Physiol Circ Physiol. 2004;287:H914–H920. doi: 10.1152/ajpheart.00651.2003. PubMed DOI
Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab. 2007;92:1467–1473. doi: 10.1210/jc.2006-2210. PubMed DOI
Leek BT, Mudaliar SRD, Henry R, Mathieu-Costello O, Richardson RS. Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle. Am J Physiol Integr Comp Physiol. 2001;280:R441–R447. doi: 10.1152/ajpregu.2001.280.2.R441. PubMed DOI
Lash JM, Reilly T, Thomas M, Bohlen HG. Adrenergic and pressure-dependent vascular regulation in sedentary and trained rats. Am J Physiol Circ Physiol. 1993;265:H1064–H1073. doi: 10.1152/ajpheart.1993.265.4.H1064. PubMed DOI
Jansakul C, Hirunpan P. Effects of exercise training on responsiveness of the mesenteric arterial bed to phenylephrine and KCl in male rats. Br J Pharmacol. 1999;127:1559–1566. doi: 10.1038/sj.bjp.0702697. PubMed DOI PMC
Chies AB, De Oliveira AM, Pereira FC, De Andrade CR, Corrêa FMA. Phenylephrine-induced vasoconstriction of the rat superior mesenteric artery is decreased after repeated swimming. J Smooth Muscle Res. 2004;40:249–258. doi: 10.1540/jsmr.40.249. PubMed DOI
Sandoo A, van Zanten JJCSV, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4:302. doi: 10.2174/1874192401004010302. PubMed DOI PMC
Chen S-J, Wu C-C, Yen M-H. Exercise training activates large-conductance calcium-activated K+ channels and enhances nitric oxide production in rat mesenteric artery and thoracic aorta. J Biomed Sci. 2001;8:248–255. doi: 10.1007/BF02256598. PubMed DOI
Albarwani S, Al-Siyabi S, Al-Husseini I, Al-Ismail A, Al-Lawati I, Al-Bahrani I, Tanira MO. Lisinopril alters contribution of nitric oxide and K(Ca) channels to vasodilatation in small mesenteric arteries of spontaneously hypertensive rats. Physiol Res. 2015;64:39–49. doi: 10.33549/physiolres.932780. PubMed DOI
Green DJ, Maiorana A, O’Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561:1–25. doi: 10.1113/jphysiol.2004.068197. PubMed DOI PMC
Yang Y, Li P-Y, Cheng J, Mao L, Wen J, Tan X-Q, Liu Z-F, Zeng X-R. Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension. 2013;61:519–525. doi: 10.1161/HYPERTENSIONAHA.111.00211. PubMed DOI
Climent B, Sánchez A, Moreno L, Pérez-Vizcaíno F, García-Sacristán A, Rivera L, Prieto D. Underlying mechanisms preserving coronary basal tone and NO-mediated relaxation in obesity: involvement of β1 subunit-mediated upregulation of BKCa channels. Atherosclerosis. 2017;263:227–236. doi: 10.1016/j.atherosclerosis.2017.06.354. PubMed DOI
Al-Brakati AY, Kamishima T, Dart C, Quayle JM. Caveolar disruption causes contraction of rat femoral arteries via reduced basal NO release and subsequent closure of BKCa channels. PeerJ. 2015;3:e966. doi: 10.7717/peerj.966. PubMed DOI PMC
Hou S, Heinemann SH, Hoshi T. Modulation of BKCa channel gating by endogenous signaling molecules. Physiology. 2009;24:26–35. doi: 10.1152/physiol.00032.2008. PubMed DOI PMC
Tanaka Y, Koike K, Toro L. MaxiK channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms. J Smooth Muscle Res. 2004;40:125–153. doi: 10.1540/jsmr.40.125. PubMed DOI