Does cardiovascular autonomic dysfunction contribute to fatigue in myasthenia gravis?

. 2022 Mar 25 ; 71 (1) : 79-91. [epub] 20220119

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35043646

Myasthenia gravis (MG) is an autoimmune disease characterized by fatigable muscle weakness. Despite full spontaneous or pharmacological remission some MG patients still complain of physical and mental fatigue. Fatigue has been related to autonomic dysregulation. The aim of this study was to assess autonomic responses in a group of MG patients in complete remission but complaining of persistent fatigue. Seventeen well-regulated but persistently fatigued MG patients and 17 individually matched controls underwent echocardiography assessing systolic and diastolic heart function. Beat to beat cardiovascular responses at rest and to 30o head-up tilt, tilt-back, and 2-min static handgrip contraction were recorded. Fatigued MG patients had a statistically significant higher resting HR than their matched controls (p=0.03). The difference in resting heart rate between MG patients not using acetylcholine esterase inhibitors (AChEi) and their matched controls was even more pronounced (p=0.007). The autonomic cardiovascular adjustments to head-up tilt, tilt-back and handgrip contraction were not statistically significant different between patients and controls. We found a higher resting heart rate in all well-regulated but fatigued MG patients compared with controls. The difference was more pronounced between patients not taking AChEi compared to their matched controls. This finding may reflect a disturbed resting sympathovagal balance and this might be a contributing factor to the fatigue symptoms.

Zobrazit více v PubMed

Hughes BW, Moro De Casillas ML, Kaminski HJ. Pathophysiology of myasthenia gravis. Semin Neurol. 2004;24:21–30. doi: 10.1055/s-2004-829585. PubMed DOI

Keesey JC. AAEE Minimonograph #33: electrodiagnostic approach to defects of neuromuscular transmission. Muscle Nerve. 1989;12:613–626. doi: 10.1002/mus.880120802. PubMed DOI

Di Vico IA, Cirillo G, Tessitore A, Siciliano M, Venturelli M, Falup-Pecurariu C, Tedeschi G, Morgante F, Tinazzi M. Fatigue in hypokinetic, hyperkinetic, and functional movement disorders. Parkinsonism Relat Disord. 2021;86:114–123. doi: 10.1016/j.parkreldis.2021.03.018. PubMed DOI

Grongstad A, V⊘llestad NK, Oldervoll LM, Spruit MA, Edvardsen A. The effects of high-versus moderate-intensity exercise on fatigue in sarcoidosis. J Clin Med. 2019;8:460. doi: 10.3390/jcm8040460. PubMed DOI PMC

Hoffmann S, Ramm J, Grittner U, Kohler S, Siedler J, Meisel A. Fatigue in myasthenia gravis: Risk factors and impact on quality of life. Brain Behav. 2016;6:e00538. doi: 10.1002/brb3.538. PubMed DOI PMC

Alekseeva TM, Gavrilov YV, Kreis OA, Valko PO, Weber KP, Valko Y. Fatigue in patients with myasthenia gravis. J Neurol. 2018;265:2312–2321. doi: 10.1007/s00415-018-8995-4. PubMed DOI

Ruiter AM, Verschuuren J, Tannemaat MR. Fatigue in patients with myasthenia gravis. A systematic review of the literature. Neuromuscul Disord. 2020;30:631–639. doi: 10.1016/j.nmd.2020.06.010. PubMed DOI

Elsais A, Wyller VB, Loge JH, Kerty E. Fatigue in myasthenia gravis: is it more than muscular weakness? BMC Neurol. 2013;13:132. doi: 10.1186/1471-2377-13-132. PubMed DOI PMC

Symonette CJ, Watson BV, Koopman WJ, Nicolle MW, Doherty TJ. Muscle strength and fatigue in patients with generalized myasthenia gravis. Muscle Nerve. 2010;41:362–369. doi: 10.1002/mus.21493. PubMed DOI

Paul RH, Cohen RA, Goldstein JM, Gilchrist JM. Fatigue and its impact on patients with myasthenia gravis. Muscle Nerve. 2000;23:1402–1406. doi: 10.1002/1097-4598(200009)23:9<1402::aid-mus11>3.0.co;2-b. PubMed DOI

Stewart JM. Autonomic nervous system dysfunction in adolescents with postural orthostatic tachycardia syndrome and chronic fatigue syndrome is characterized by attenuated vagal baroreflex and potentiated sympathetic vasomotion. Pediatr Res. 2000;48:218–226. doi: 10.1203/00006450-200008000-00016. PubMed DOI

Wyller VB, Saul JP, Wall⊘e L, Thaulow E. Sympathetic cardiovascular control during orthostatic stress and isometric exercise in adolescent chronic fatigue syndrome. Eur J Appl Physiol. 2008;102:623–632. doi: 10.1007/s00421-007-0634-1. PubMed DOI

Wyller VB, Due R, Saul JP, Amlie JP, Thaulow E. Usefulness of an abnormal cardiovascular response during low-grade head-up tilt-test for discriminating adolescents with chronic fatigue from healthy controls. Am J Cardiol. 2007;99:997–1001. doi: 10.1016/j.amjcard.2006.10.067. PubMed DOI

Rowell LB. Human Cardiovascular Control. Oxford University Press; 1993. p. 516.

Low PA, Benarroch EE. Clinical Autonomic Disorders. Lippincott Williams & Wilkins; 2008. p. 768.

Smith SA, Mitchell JH, Garry MG. The mammalian exercise pressor reflex in health and disease. Exp Physiol. 2006;91:89–102. doi: 10.1113/expphysiol.2005.032367. PubMed DOI

Musthafa CP, Moosa A, Chandrashekharan PA, Nandakumar R, Narayanan AV, Balakrishnan V. Intestinal pseudo-obstruction as initial presentation of thymoma. Indian J Gastroenterol. 2006;25:264–265. PubMed

Pande R, Leis AA. Myasthenia gravis, thymoma, intestinal pseudo-obstruction, and neuronal nicotinic acetylcholine receptor antibody. Muscle Nerve. 1999;22:1600–602. doi: 10.1002/(sici)1097-4598(199911)22:11<1600::aid-mus19>3.0.co;2-3. PubMed DOI

Mygland A, Tysnes OB, Matre R, Aarli JA, Gilhus NE. Anti-cardiac ryanodine receptor antibodies in thymoma-associated myasthenia gravis. Autoimmunity. 1994;17:327–331. doi: 10.3109/08916939409010673. PubMed DOI

Suzuki S, Utsugisawa K, Yoshikawa H, Motomura M, Matsubara S, Yokoyama K, Nagane Y, Maruta T, Satoh T, Sato H, Kuwana M, Suzuki N. Autoimmune targets of heart and skeletal muscles in myasthenia gravis. Arch Neurol. 2009;66:1334–1338. doi: 10.1001/archneurol.2009.229. PubMed DOI

Rzepiński Ł, Zawadka-Kunikowska M, Newton JL, Zalewski P. Cardiac Autonomic Dysfunction in Myasthenia Gravis and Relapsing-Remitting Multiple Sclerosis-A Pilot Study. J Clin Med. 2021;10:2173. doi: 10.3390/jcm10102173. PubMed DOI PMC

Shivamurthy P, Parker MW. Cardiac manifestations of myasthenia gravis: A systematic review. IJC Metab Endocr. 2014;5:3–6. doi: 10.1016/j.ijcme.2014.08.003. DOI

Kato T, Hirose S, Kumagai S, Ozaki A, Matsumoto S, Inoko M. Electrocardiography as the first step for the further examination of cardiac involvement in myasthenia gravis. BioMed Res Int. 2016;2016:8058946. doi: 10.1155/2016/8058946. PubMed DOI PMC

Călin C, Savu O, Dumitru D, Ghiorghiu I, Călin A, Capraru C, Popescu BA, Croitoru M, Vîlciu C, Ginghină C. Cardiac involvement in myasthenia gravis--is there a specific pattern? Rom J Intern Med. 2009;47:179–189. PubMed

Kimura S, Nezu A. Peripheral nerve involvement in myasthenia gravis. Brain Dev. 1989;11:429–432. doi: 10.1016/s0387-7604(89)80030-0. PubMed DOI

Zila I, Mokra D, Kopincova J, Kolomaznik M, Javorka M, Calkovska A. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway. Physiol Res. 2017;66(Suppl 2):S139–S145. doi: 10.33549/physiolres.933671. PubMed DOI

Douchet MP, Quiring E, Bronner F, Vi-Fane R, Messier M, Chauvin M, Warter JM. Paradoxal lowering of parasympathetic indices in myasthenic patients. (Article in French) Arch Mal Coeur Vaiss. 1999;92:711–717. PubMed

Lechin F, van der Dijs B, Pardey-Maldonado B, John E, Jimenez V, Orozco B, Baez S, Lechin ME. Enhancement of noradrenergic neural transmission: An effective therapy of myasthenia gravis: A report on 52 consecutive patients. J Med. 2000;31:333–361. PubMed

Shukla G, Gupta S, Goyal V, Singh S, Srivastava A, Behari M. Abnormal sympathetic hyper-reactivity in patients with myasthenia gravis: a prospective study. Clin Neurol Neurosurg. 2013;115:179–186. doi: 10.1016/j.clineuro.2012.05.013. PubMed DOI

Stoica E, Enulescu O. Deficiency of sympathetic nervous system function in myasthenia. J Auton Nerv Syst. 1992;38:69–76. doi: 10.1016/0165-1838(92)90218-6. PubMed DOI

Kocabas ZU, Kizilay F, Basarici I, Uysal H. Evaluation of cardiac autonomic functions in myasthenia gravis. Neurol Res. 2018;40:405–412. doi: 10.1080/01616412.2018.1446690. PubMed DOI

Nikolić A, Perić S, Nišić T, Popović S, Ilić M, Rakočević Stojanović V, Lavrnić D. The presence of dysautonomia in different subgroups of myasthenia gravis patients. J Neurol. 2014;261:2119–2127. doi: 10.1007/s00415-014-7465-x. PubMed DOI

Benjamin RN, Aaron S, Sivadasan A, Devasahayam S, Sebastin A, Alexander M. The spectrum of autonomic dysfunction in myasthenic crisis. Ann Indian Acad Neurol. 2018;21:42–48. doi: 10.4103/aian.AIAN_270_17. PubMed DOI PMC

Puneeth CS, Chandra SR, Yadav R, Sathyaprabha TN, Chandran S. Heart rate and blood pressure variability in patients with myasthenia gravis. Ann Indian Acad Neurol. 2013;16:329–332. doi: 10.4103/0972-2327.116912. PubMed DOI PMC

Jaretzki A, 3rd, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, Sanders DB. Myasthenia gravis: Recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann Thorac Surg. 2000;70:327–334. doi: 10.1016/s0003-4975(00)01595-2. PubMed DOI

Villacorta AS, Villacorta H, Caldas JA, Precht BC, Porto PB, Rodrigues L, Neves M, Xavier AR, Kanaan S, Mesquita CT, da Nóbrega ACL. Effects of Heart Rate Reduction With Either Pyridostigmine or Ivabradine in Patients With Heart Failure: A Randomized, Double-Blind Study. J Cardiovasc Pharmacol Ther. 2019;24:139–145. doi: 10.1177/1074248418799364. PubMed DOI

Hisdal J, Toska K, Flateb⊘ T, Waaler B, Wall⊘e L. Regulation of arterial blood pressure in humans during isometric muscle contraction and lower body negative pressure. Eur J Appl Physiol. 2004;91:336–341. doi: 10.1007/s00421-003-0982-4. PubMed DOI

Eriksen M, Wall⊘e L. Improved method for cardiac output determination in man using ultrasound Doppler technique. Med Biol Eng Comput. 1990;28:555–560. doi: 10.1007/bf02442607. PubMed DOI

Imholz BP, Settels JJ, van der Meiracker AH, Wesseling KH, Wieling W. Non-invasive continuous finger blood pressure measurement during orthostatic stress compared to intra-arterial pressure. Cardiovasc Res. 1990;24:214–221. doi: 10.1093/cvr/24.3.214. PubMed DOI

Parati G, Casadei R, Groppelli A, Di Rienzo M, Mancia G. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension. 1989;13:647–655. doi: 10.1161/01.hyp.13.6.647. PubMed DOI

Toska K, Eriksen M. Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol. 1993;472:501–512. doi: 10.1113/jphysiol.1993.sp019958. PubMed DOI PMC

Toska K, Eriksen M. Peripheral vasoconstriction shortly after onset of moderate exercise in humans. J Appl Physiol (1985) 1994;77:1519–1525. doi: 10.1152/jappl.1994.77.3.1519. PubMed DOI

Toska K. Handgrip contraction induces a linear increase in arterial pressure by peripheral vasoconstriction, increased heart rate and a decrease in stroke volume. Acta Physiol (Oxf) 2010;200:211–221. doi: 10.1111/j.1748-1716.2010.02144.x. PubMed DOI

Toska K, Wall⊘e L. Dynamic time course of hemodynamic responses after passive head-up tilt and tilt back to supine position. J Appl Physiol (1985) 2002;92:1671–1676. doi: 10.1152/japplphysiol.00465.2000. PubMed DOI

Elsais A, Johansen B, Kerty E. Airway limitation and exercise intolerance in well-regulated myasthenia gravis patients. Acta Neurol Scand. 2010;190(Suppl):12–17. doi: 10.1111/j.1600-0404.2010.01369.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...