Does cardiovascular autonomic dysfunction contribute to fatigue in myasthenia gravis?
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35043646
PubMed Central
PMC8997671
DOI
10.33549/physiolres.934660
PII: 934660
Knihovny.cz E-zdroje
- MeSH
- autonomní nervový systém MeSH
- krevní tlak fyziologie MeSH
- lidé MeSH
- myasthenia gravis * komplikace diagnóza MeSH
- nemoci autonomního nervového systému * MeSH
- síla ruky fyziologie MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Myasthenia gravis (MG) is an autoimmune disease characterized by fatigable muscle weakness. Despite full spontaneous or pharmacological remission some MG patients still complain of physical and mental fatigue. Fatigue has been related to autonomic dysregulation. The aim of this study was to assess autonomic responses in a group of MG patients in complete remission but complaining of persistent fatigue. Seventeen well-regulated but persistently fatigued MG patients and 17 individually matched controls underwent echocardiography assessing systolic and diastolic heart function. Beat to beat cardiovascular responses at rest and to 30o head-up tilt, tilt-back, and 2-min static handgrip contraction were recorded. Fatigued MG patients had a statistically significant higher resting HR than their matched controls (p=0.03). The difference in resting heart rate between MG patients not using acetylcholine esterase inhibitors (AChEi) and their matched controls was even more pronounced (p=0.007). The autonomic cardiovascular adjustments to head-up tilt, tilt-back and handgrip contraction were not statistically significant different between patients and controls. We found a higher resting heart rate in all well-regulated but fatigued MG patients compared with controls. The difference was more pronounced between patients not taking AChEi compared to their matched controls. This finding may reflect a disturbed resting sympathovagal balance and this might be a contributing factor to the fatigue symptoms.
Zobrazit více v PubMed
Hughes BW, Moro De Casillas ML, Kaminski HJ. Pathophysiology of myasthenia gravis. Semin Neurol. 2004;24:21–30. doi: 10.1055/s-2004-829585. PubMed DOI
Keesey JC. AAEE Minimonograph #33: electrodiagnostic approach to defects of neuromuscular transmission. Muscle Nerve. 1989;12:613–626. doi: 10.1002/mus.880120802. PubMed DOI
Di Vico IA, Cirillo G, Tessitore A, Siciliano M, Venturelli M, Falup-Pecurariu C, Tedeschi G, Morgante F, Tinazzi M. Fatigue in hypokinetic, hyperkinetic, and functional movement disorders. Parkinsonism Relat Disord. 2021;86:114–123. doi: 10.1016/j.parkreldis.2021.03.018. PubMed DOI
Grongstad A, V⊘llestad NK, Oldervoll LM, Spruit MA, Edvardsen A. The effects of high-versus moderate-intensity exercise on fatigue in sarcoidosis. J Clin Med. 2019;8:460. doi: 10.3390/jcm8040460. PubMed DOI PMC
Hoffmann S, Ramm J, Grittner U, Kohler S, Siedler J, Meisel A. Fatigue in myasthenia gravis: Risk factors and impact on quality of life. Brain Behav. 2016;6:e00538. doi: 10.1002/brb3.538. PubMed DOI PMC
Alekseeva TM, Gavrilov YV, Kreis OA, Valko PO, Weber KP, Valko Y. Fatigue in patients with myasthenia gravis. J Neurol. 2018;265:2312–2321. doi: 10.1007/s00415-018-8995-4. PubMed DOI
Ruiter AM, Verschuuren J, Tannemaat MR. Fatigue in patients with myasthenia gravis. A systematic review of the literature. Neuromuscul Disord. 2020;30:631–639. doi: 10.1016/j.nmd.2020.06.010. PubMed DOI
Elsais A, Wyller VB, Loge JH, Kerty E. Fatigue in myasthenia gravis: is it more than muscular weakness? BMC Neurol. 2013;13:132. doi: 10.1186/1471-2377-13-132. PubMed DOI PMC
Symonette CJ, Watson BV, Koopman WJ, Nicolle MW, Doherty TJ. Muscle strength and fatigue in patients with generalized myasthenia gravis. Muscle Nerve. 2010;41:362–369. doi: 10.1002/mus.21493. PubMed DOI
Paul RH, Cohen RA, Goldstein JM, Gilchrist JM. Fatigue and its impact on patients with myasthenia gravis. Muscle Nerve. 2000;23:1402–1406. doi: 10.1002/1097-4598(200009)23:9<1402::aid-mus11>3.0.co;2-b. PubMed DOI
Stewart JM. Autonomic nervous system dysfunction in adolescents with postural orthostatic tachycardia syndrome and chronic fatigue syndrome is characterized by attenuated vagal baroreflex and potentiated sympathetic vasomotion. Pediatr Res. 2000;48:218–226. doi: 10.1203/00006450-200008000-00016. PubMed DOI
Wyller VB, Saul JP, Wall⊘e L, Thaulow E. Sympathetic cardiovascular control during orthostatic stress and isometric exercise in adolescent chronic fatigue syndrome. Eur J Appl Physiol. 2008;102:623–632. doi: 10.1007/s00421-007-0634-1. PubMed DOI
Wyller VB, Due R, Saul JP, Amlie JP, Thaulow E. Usefulness of an abnormal cardiovascular response during low-grade head-up tilt-test for discriminating adolescents with chronic fatigue from healthy controls. Am J Cardiol. 2007;99:997–1001. doi: 10.1016/j.amjcard.2006.10.067. PubMed DOI
Rowell LB. Human Cardiovascular Control. Oxford University Press; 1993. p. 516.
Low PA, Benarroch EE. Clinical Autonomic Disorders. Lippincott Williams & Wilkins; 2008. p. 768.
Smith SA, Mitchell JH, Garry MG. The mammalian exercise pressor reflex in health and disease. Exp Physiol. 2006;91:89–102. doi: 10.1113/expphysiol.2005.032367. PubMed DOI
Musthafa CP, Moosa A, Chandrashekharan PA, Nandakumar R, Narayanan AV, Balakrishnan V. Intestinal pseudo-obstruction as initial presentation of thymoma. Indian J Gastroenterol. 2006;25:264–265. PubMed
Pande R, Leis AA. Myasthenia gravis, thymoma, intestinal pseudo-obstruction, and neuronal nicotinic acetylcholine receptor antibody. Muscle Nerve. 1999;22:1600–602. doi: 10.1002/(sici)1097-4598(199911)22:11<1600::aid-mus19>3.0.co;2-3. PubMed DOI
Mygland A, Tysnes OB, Matre R, Aarli JA, Gilhus NE. Anti-cardiac ryanodine receptor antibodies in thymoma-associated myasthenia gravis. Autoimmunity. 1994;17:327–331. doi: 10.3109/08916939409010673. PubMed DOI
Suzuki S, Utsugisawa K, Yoshikawa H, Motomura M, Matsubara S, Yokoyama K, Nagane Y, Maruta T, Satoh T, Sato H, Kuwana M, Suzuki N. Autoimmune targets of heart and skeletal muscles in myasthenia gravis. Arch Neurol. 2009;66:1334–1338. doi: 10.1001/archneurol.2009.229. PubMed DOI
Rzepiński Ł, Zawadka-Kunikowska M, Newton JL, Zalewski P. Cardiac Autonomic Dysfunction in Myasthenia Gravis and Relapsing-Remitting Multiple Sclerosis-A Pilot Study. J Clin Med. 2021;10:2173. doi: 10.3390/jcm10102173. PubMed DOI PMC
Shivamurthy P, Parker MW. Cardiac manifestations of myasthenia gravis: A systematic review. IJC Metab Endocr. 2014;5:3–6. doi: 10.1016/j.ijcme.2014.08.003. DOI
Kato T, Hirose S, Kumagai S, Ozaki A, Matsumoto S, Inoko M. Electrocardiography as the first step for the further examination of cardiac involvement in myasthenia gravis. BioMed Res Int. 2016;2016:8058946. doi: 10.1155/2016/8058946. PubMed DOI PMC
Călin C, Savu O, Dumitru D, Ghiorghiu I, Călin A, Capraru C, Popescu BA, Croitoru M, Vîlciu C, Ginghină C. Cardiac involvement in myasthenia gravis--is there a specific pattern? Rom J Intern Med. 2009;47:179–189. PubMed
Kimura S, Nezu A. Peripheral nerve involvement in myasthenia gravis. Brain Dev. 1989;11:429–432. doi: 10.1016/s0387-7604(89)80030-0. PubMed DOI
Zila I, Mokra D, Kopincova J, Kolomaznik M, Javorka M, Calkovska A. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway. Physiol Res. 2017;66(Suppl 2):S139–S145. doi: 10.33549/physiolres.933671. PubMed DOI
Douchet MP, Quiring E, Bronner F, Vi-Fane R, Messier M, Chauvin M, Warter JM. Paradoxal lowering of parasympathetic indices in myasthenic patients. (Article in French) Arch Mal Coeur Vaiss. 1999;92:711–717. PubMed
Lechin F, van der Dijs B, Pardey-Maldonado B, John E, Jimenez V, Orozco B, Baez S, Lechin ME. Enhancement of noradrenergic neural transmission: An effective therapy of myasthenia gravis: A report on 52 consecutive patients. J Med. 2000;31:333–361. PubMed
Shukla G, Gupta S, Goyal V, Singh S, Srivastava A, Behari M. Abnormal sympathetic hyper-reactivity in patients with myasthenia gravis: a prospective study. Clin Neurol Neurosurg. 2013;115:179–186. doi: 10.1016/j.clineuro.2012.05.013. PubMed DOI
Stoica E, Enulescu O. Deficiency of sympathetic nervous system function in myasthenia. J Auton Nerv Syst. 1992;38:69–76. doi: 10.1016/0165-1838(92)90218-6. PubMed DOI
Kocabas ZU, Kizilay F, Basarici I, Uysal H. Evaluation of cardiac autonomic functions in myasthenia gravis. Neurol Res. 2018;40:405–412. doi: 10.1080/01616412.2018.1446690. PubMed DOI
Nikolić A, Perić S, Nišić T, Popović S, Ilić M, Rakočević Stojanović V, Lavrnić D. The presence of dysautonomia in different subgroups of myasthenia gravis patients. J Neurol. 2014;261:2119–2127. doi: 10.1007/s00415-014-7465-x. PubMed DOI
Benjamin RN, Aaron S, Sivadasan A, Devasahayam S, Sebastin A, Alexander M. The spectrum of autonomic dysfunction in myasthenic crisis. Ann Indian Acad Neurol. 2018;21:42–48. doi: 10.4103/aian.AIAN_270_17. PubMed DOI PMC
Puneeth CS, Chandra SR, Yadav R, Sathyaprabha TN, Chandran S. Heart rate and blood pressure variability in patients with myasthenia gravis. Ann Indian Acad Neurol. 2013;16:329–332. doi: 10.4103/0972-2327.116912. PubMed DOI PMC
Jaretzki A, 3rd, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, Sanders DB. Myasthenia gravis: Recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann Thorac Surg. 2000;70:327–334. doi: 10.1016/s0003-4975(00)01595-2. PubMed DOI
Villacorta AS, Villacorta H, Caldas JA, Precht BC, Porto PB, Rodrigues L, Neves M, Xavier AR, Kanaan S, Mesquita CT, da Nóbrega ACL. Effects of Heart Rate Reduction With Either Pyridostigmine or Ivabradine in Patients With Heart Failure: A Randomized, Double-Blind Study. J Cardiovasc Pharmacol Ther. 2019;24:139–145. doi: 10.1177/1074248418799364. PubMed DOI
Hisdal J, Toska K, Flateb⊘ T, Waaler B, Wall⊘e L. Regulation of arterial blood pressure in humans during isometric muscle contraction and lower body negative pressure. Eur J Appl Physiol. 2004;91:336–341. doi: 10.1007/s00421-003-0982-4. PubMed DOI
Eriksen M, Wall⊘e L. Improved method for cardiac output determination in man using ultrasound Doppler technique. Med Biol Eng Comput. 1990;28:555–560. doi: 10.1007/bf02442607. PubMed DOI
Imholz BP, Settels JJ, van der Meiracker AH, Wesseling KH, Wieling W. Non-invasive continuous finger blood pressure measurement during orthostatic stress compared to intra-arterial pressure. Cardiovasc Res. 1990;24:214–221. doi: 10.1093/cvr/24.3.214. PubMed DOI
Parati G, Casadei R, Groppelli A, Di Rienzo M, Mancia G. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension. 1989;13:647–655. doi: 10.1161/01.hyp.13.6.647. PubMed DOI
Toska K, Eriksen M. Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol. 1993;472:501–512. doi: 10.1113/jphysiol.1993.sp019958. PubMed DOI PMC
Toska K, Eriksen M. Peripheral vasoconstriction shortly after onset of moderate exercise in humans. J Appl Physiol (1985) 1994;77:1519–1525. doi: 10.1152/jappl.1994.77.3.1519. PubMed DOI
Toska K. Handgrip contraction induces a linear increase in arterial pressure by peripheral vasoconstriction, increased heart rate and a decrease in stroke volume. Acta Physiol (Oxf) 2010;200:211–221. doi: 10.1111/j.1748-1716.2010.02144.x. PubMed DOI
Toska K, Wall⊘e L. Dynamic time course of hemodynamic responses after passive head-up tilt and tilt back to supine position. J Appl Physiol (1985) 2002;92:1671–1676. doi: 10.1152/japplphysiol.00465.2000. PubMed DOI
Elsais A, Johansen B, Kerty E. Airway limitation and exercise intolerance in well-regulated myasthenia gravis patients. Acta Neurol Scand. 2010;190(Suppl):12–17. doi: 10.1111/j.1600-0404.2010.01369.x. PubMed DOI