Effects of mechanical ventilation versus apnea on bi-ventricular pressure-volume loop recording
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
35043651
PubMed Central
PMC8997677
DOI
10.33549/physiolres.934787
PII: 934787
Knihovny.cz E-resources
- MeSH
- Apnea diagnosis MeSH
- Ventricular Function, Left physiology MeSH
- Ventricular Function, Right * MeSH
- Ventricular Pressure MeSH
- Swine MeSH
- Heart Ventricles * MeSH
- Stroke Volume physiology MeSH
- Respiration, Artificial adverse effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Respiration changes intrathoracic pressure and lung volumes in a cyclic manner, which affect cardiac function. Invasive ventricular pressure-volume (PV) loops can be recorded during ongoing mechanical ventilation or in transient apnea. No consensus exists considering ventilatory mode during PV loop recording. The objective of this study was to investigate the magnitude of any systematic difference of bi-ventricular PV loop variables recorded during mechanical ventilation versus apnea. PV loops were recorded simultaneously from the right ventricle and left ventricle in a closed chest porcine model during mechanical ventilation and in transient apnea (n=72). Variables were compared by regression analyses. Mechanical ventilation versus apnea affected regression coefficients for important PV variables including right ventricular stroke volume (1.22, 95% CI [1.08-1.36], p=0.003), right ventricular ejection fraction (0.90, 95% CI [0.81-1.00], p=0.043) and right ventricular arterial elastance (0.61, 95%CI [0.55-0.68], p<0.0001). Right ventricular pressures and volumes were parallelly shifted with Y-intercepts different from 0. Few left ventricular variables were affected, mainly first derivatives of pressure (dP/dt(max): 0.96, 95% CI [0.92-0.99], p=0.016, and dP/dt(min): 0.92, 95% CI [0.86-0.99], p=0.026), which might be due to decreased heart rate in apnea (Y-intercept -6.88, 95% CI [-12.22; -1.54], p=0.012). We conclude, that right ventricular stroke volume, ejection fraction and arterial elastance were mostly affected by apnea compared to mechanical ventilation. The results motivate future standardization of respiratory modality when measuring PV relationships.
See more in PubMed
Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005;289:H501–H512. doi: 10.1152/ajpheart.00138.2005. PubMed DOI
Lahm T, Douglas IS, Archer SL, Bogaard HJ, Chesler NC, Haddad F, Hemnes AR, Kawut SM, Kline JA, Kolb TM, Mathai SC, Mercier O, Michelakis ED, Naeije R, Tuder RM, Venteuolo CE, Vieillard-Baron A, Voelkel NF, Vonk-Noordegraaf A, Hassoun PM. Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement. Am J Resp Crit Care. 2018;198:e15–43. doi: 10.1164/rccm.201806-1160st. PubMed DOI PMC
Lara-Pezzi E, Menasché P, Trouvin J-H, Badimón L, Ioannidis JPA, Wu JC, Hill JA, Koch WJ, Felice AFD, Waele PD, Steenwinckel V, Hajjar RJ, Zeiher AM. Guidelines for Translational Research in Heart Failure. J Cardiovasc Transl. 2015;8:3–22. doi: 10.1007/s12265-015-9606-8. PubMed DOI
Michard F, Teboul J-L. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–289. doi: 10.1186/cc710. PubMed DOI PMC
Pinsky MR. Cardiopulmonary interactions: Physiologic basis and clinical applications. Ann Am Thorac Soc. 2018;15(Suppl 1):S45–S48. doi: 10.1513/annalsats.201704-339fr. PubMed DOI PMC
Vieillard-Baron A, Matthay M, Teboul JL, Bein T, Schultz M, Magder S, Marini JJ. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intens Care Med. 2016;42:739–749. doi: 10.1007/s00134-016-4326-3. PubMed DOI
Mitchell JR, Whitelaw WA, Sas R, Smith ER, Tyberg JV, Belenkie I. RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol Heart Circ Physiol. 2005;289:H549–H557. doi: 10.1152/ajpheart.01180.2004. PubMed DOI
Bove T, Bouchez S, Hert SD, Wouters P, Somer FD, Devos D, Somers P, Nooten GV. Acute and chronic effects of dysfunction of right ventricular outflow tract components on right ventricular performance in a porcine model implications for primary repair of tetralogy of fallot. J Am Coll Cardiol. 2012;60:64–71. doi: 10.1016/j.jacc.2012.03.035. PubMed DOI
Gorcsan J, Strum DP, Mandarino WA, Gulati VK, Pinsky MR. Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue Doppler echocardiography: Comparison with sonomicrometry and pressure-volume relations. Circulation. 1997;95:2423–2433. doi: 10.1161/01.cir.95.10.2423. PubMed DOI
De Jong R, Van Hout GPJ, Houtgraaf JH, Takashima S, Pasterkamp G, Hoefer I, Duckers HJ. Cardiac function in a long-term follow-up study of moderate and severe porcine model of chronic myocardial infarction. Biomed Res Int. 2015;2015:1–11. doi: 10.1155/2015/209315. PubMed DOI PMC
Missant C, Rex S, Segers P, Wouters PF. Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med. 2007;35:707–715. doi: 10.1097/01.ccm.0000257326.96342.57. PubMed DOI
Alogna A, Manninger M, Schwarzl M, Zirngast B, Steendijk P, Verderber J, Zweiker D, Maechler H, Pieske BM, Post H. Inotropic effects of experimental hyperthermia and hypothermia on left ventricular function in pigs-comparison with dobutamine. Crit Care Med. 2016;44:e158–e167. doi: 10.1097/ccm.0000000000001358. PubMed DOI
Lyhne MD, Schultz JG, Kramer A, Mortensen CS, Nielsen-Kudsk JE, Andersen A. Right ventricular adaptation in the critical phase after acute intermediate-risk pulmonary embolism. Eur Heart J Acute Cardiovasc Care. 2021;10:243–249. doi: 10.1177/2048872620925253. PubMed DOI
Roosens CD, Ama R, Leather HA, Segers P, Sorbara C, Wouters PF, Poelaert JI. Hemodynamic effects of different lung-protective ventilation strategies in closed-chest pigs with normal lungs. Crit Care Med. 2006;34:2990–996. doi: 10.1097/01.ccm.0000242758.37427.16. PubMed DOI
Boulate D, Ataam JA, Connolly AJ, Giraldeau G, Amsallem M, Decante B, Lamrani L, Fadel E, Dorfmuller P, Perros F, Haddad F, Mercier O. Early development of right ventricular ischemic lesions in a novel large animal model of acute right heart failure in chronic thromboembolic pulmonary hypertension. J Card Fail. 2017;23:876–886. doi: 10.1016/j.cardfail.2017.08.447. PubMed DOI
Gufler H, Wagner S, Niefeldt S, Klopsch C, Brill R, Wohlgemuth WA, Yerebakan C. Levels of agreement between cardiac magnetic resonance and conductance catheter measurements of right ventricular volumes after pulmonary artery banding. Acta Radiol. 2019;61:894–902. doi: 10.1177/0284185119886318. PubMed DOI
Ishikawa K, Aguero J, Oh JG, Hammoudi N, Fish LA, Leonardson L, Picatose B, Santos-Gallego CG, Fish KM, Hajjar RJ. Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J Am Heart Assoc. 2015;4:e001925. doi: 10.1161/jaha.115.001925. PubMed DOI PMC
Axell RG, Messer SJ, White PA, McCabe C, Priest A, Statopoulou T, Drozdzynska M, Viscasillas J, Hinchy EC, Hampton-Till J, Alibhai HI, Morrell N, Pepke-Zaba J, Large SR, Hoole SP. Ventriculo-arterial coupling detects occult RV dysfunction in chronic thromboembolic pulmonary vascular disease. Physiol Rep. 2017;5:e13227. doi: 10.14814/phy2.13227. PubMed DOI PMC
Cornwell WK, Tran T, Cerbin L, Coe G, Muralidhar A, Hunter K, Altman N, Ambardekar AV, Tompkins C, Zipse M, Schulte M, O’Gean K, Ostertag M, Hoffman J, Pal JD, Lawley JS, Levine BD, Wolfel E, Kohrt WM, Buttrick P. New insights into resting and exertional right ventricular performance in the healthy heart through real-time pressure-volume analysis. J Physiol. 2020;598:2575–2587. doi: 10.1113/jp279759. PubMed DOI
Penicka M, Bartunek J, Trakalova H, Hrabakova H, Maruskova M, Karasek J, Kocka V. Heart failure with preserved ejection fraction in outpatients with unexplained dyspnea: A pressure-volume loop analysis. J Am Coll Cardiol. 2010;55:1701–1710. doi: 10.1016/j.jacc.2009.11.076. PubMed DOI
Du Sert NP, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Physiol. 2020;598:3793–3801. doi: 10.1113/jp280389. PubMed DOI PMC
Lyhne MD, Hansen JV, Dragsbaek SJ, Mortensen CS, Nielsen-Kudsk JE, Andersen A. Oxygen therapy lowers right ventricular afterload in experimental acute pulmonary embolism. Crit Care Med. 2021;49:e891–e901. doi: 10.1097/ccm.0000000000005057. PubMed DOI
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol. 2018;314:H733–H752. doi: 10.1152/ajpheart.00339.2017. PubMed DOI PMC
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol. 2021;321:H77–H111. doi: 10.1152/ajpheart.01021.2020. PubMed DOI PMC
Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M, Kapur NK, Kociol RD, Lewis EF, Mehra MR, Pagani FD, Raval AN, Ward C. Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2018;137:e578–e622. doi: 10.1161/cir.0000000000000560. PubMed DOI
Pinsky MR. The hemodynamic consequences of mechanical ventilation: an evolving story. Intens Care Med. 1997;23:493–503. doi: 10.1007/s001340050364. PubMed DOI
Alviar CL, Miller PE, McAreavey D, Katz JN, Lee B, Moriyama B, Soble J, Diepen SV, Solomon MA, Morrow DA. Positive pressure ventilation in the cardiac intensive care unit. J Am Coll Cardiol. 2018;72:1532–1553. doi: 10.1016/j.jacc.2018.06.074. PubMed DOI PMC
Castor G, Klocke RK, Stoll M, Helms J, Niedermark I. Simultaneous measurement of cardiac output by thermodilution, thoracic electrical bioimpedance and Doppler ultrasound. Br J Anaesth. 1994;72:133–138. doi: 10.1093/bja/72.1.133. PubMed DOI
Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intens Care Med. 2003;29:1426–1434. doi: 10.1007/s00134-003-1873-1. PubMed DOI
Luecke T, Pelosi P. Clinical review: Positive end-expiratory pressure and cardiac output. Crit Care. 2005;9:607621. doi: 10.1186/cc3877. PubMed DOI PMC