Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm

. 2021 Dec 23 ; 12 (1) : . [epub] 20211223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35054191

Grantová podpora
17-33136A Ministry of Health Czech Republic

Odkazy

PubMed 35054191
PubMed Central PMC8774564
DOI 10.3390/diagnostics12010024
PII: diagnostics12010024
Knihovny.cz E-zdroje

Pathological changes in the cortical lamina can cause several mental disorders. Visualization of these changes in vivo would enhance their diagnostics. Recently a framework for visualizing cortical structures by magnetic resonance imaging (MRI) has emerged. This is based on mathematical modeling of multi-component T1 relaxation at the sub-voxel level. This work proposes a new approach for their estimation. The approach is validated using simulated data. Sixteen MRI experiments were carried out on healthy volunteers. A modified echo-planar imaging (EPI) sequence was used to acquire 105 individual volumes. Data simulating the images were created, serving as the ground truth. The model was fitted to the data using a modified Trust Region algorithm. In single voxel experiments, the estimation accuracy of the T1 relaxation times depended on the number of optimization starting points and the level of noise. A single starting point resulted in a mean percentage error (MPE) of 6.1%, while 100 starting points resulted in a perfect fit. The MPE was <5% for the signal-to-noise ratio (SNR) ≥ 38 dB. Concerning multiple voxel experiments, the MPE was <5% for all components. Estimation of T1 relaxation times can be achieved using the modified algorithm with MPE < 5%.

Zobrazit více v PubMed

Brodmann K. Vergleichende Lokalisationslehre der Großhirnrinde in Ihren Prinzipeien Dargestellt auf Grund des Zellenbaues. Barth; Leipzig, Germany: 1909.

Von Economo C., Triarhou L.C. Cellular Structure of the Human Cerebral Cortex. Karger Medical and Scientific Publishers; Basel, Switzerland: 2009. DOI

Clark V.P., Courchesne E., Grafe M. In Vivo Myeloarchitectonic Analysis of Human Striate and Extrastriate Cortex Using Magnetic Resonance Imaging. Cereb. Cortex. 1992;2:417–424. doi: 10.1093/cercor/2.5.417. PubMed DOI

Clare S., Jezzard P., Matthews P. Identification of the Myelinated Layers in Striate Cortex on High Resolution MRI at 3 Tesla; Proceedings of the 10th Annual Meeting of ISMRM; Honolulu, HI, USA. 18–24 May 2002; p. 1465.

Bridge H., Clare S., Jenkinson M., Jezzard P., Parker A.J., Matthews P.M. Independent Anatomical and Functional Measures of the V1/V2 Boundary in Human Visual Cortex. J. Vis. 2005;5:93–102. doi: 10.1167/5.2.1. PubMed DOI

Clare S., Bridge H. Methodological Issues Relating to in Vivo Cortical Myelography Using MRI. Hum. Brain Mapp. 2005;26:240–250. doi: 10.1002/hbm.20162. PubMed DOI PMC

Turner R., Oros-Peusquens A.-M., Romanzetti S., Zilles K., Shah N.J. Optimised in Vivo Visualisation of Cortical Structures in the Human Brain at 3 T Using IR-TSE. Magn. Reson. Imaging. 2008;26:935–942. doi: 10.1016/j.mri.2008.01.043. PubMed DOI

Duyn J.H., van Gelderen P., Li T.-Q., de Zwart J.A., Koretsky A.P., Fukunaga M. High-Field MRI of Brain Cortical Substructure Based on Signal Phase. Proc. Natl. Acad. Sci. USA. 2007;104:11796–11801. doi: 10.1073/pnas.0610821104. PubMed DOI PMC

Trampel R., Ott D.V.M., Turner R. Do the Congenitally Blind Have a Stria of Gennari? First Intracortical Insights In Vivo. Cereb. Cortex. 2011;21:2075–2081. doi: 10.1093/cercor/bhq282. PubMed DOI

Sánchez-Panchuelo R.M., Francis S.T., Schluppeck D., Bowtell R.W. Correspondence of Human Visual Areas Identified Using Functional and Anatomical MRI In Vivo at 7 T. J. Magn. Reson. Imaging. 2012;35:287–299. doi: 10.1002/jmri.22822. PubMed DOI

Walters N.B., Egan G.F., Kril J.J., Kean M., Waley P., Jenkinson M., Watson J.D.G. In Vivo Identification of Human Cortical Areas Using High-Resolution MRI: An Approach to Cerebral Structure-Function Correlation. Proc. Natl. Acad. Sci. USA. 2003;100:2981–2986. doi: 10.1073/pnas.0437896100. PubMed DOI PMC

Dick F., Tierney A.T., Lutti A., Josephs O., Sereno M.I., Weiskopf N. In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas. J. Neurosci. 2012;32:16095–16105. doi: 10.1523/JNEUROSCI.1712-12.2012. PubMed DOI PMC

Zwanenburg J.J.M., Hendrikse J., Luijten P.R. Generalized Multiple-Layer Appearance of the Cerebral Cortex with 3D FLAIR 7.0-T MR Imaging. Radiology. 2012;262:995–1001. doi: 10.1148/radiol.11110812. PubMed DOI

De Martino F., Moerel M., Xu J., van de Moortele P.-F., Ugurbil K., Goebel R., Yacoub E., Formisano E. High-Resolution Mapping of Myeloarchitecture In Vivo: Localization of Auditory Areas in the Human Brain. Cereb. Cortex. 2015;25:3394–3405. doi: 10.1093/cercor/bhu150. PubMed DOI PMC

Fracasso A., van Veluw S.J., Visser F., Luijten P.R., Spliet W., Zwanenburg J.J.M., Dumoulin S.O., Petridou N. Lines of Baillarger in Vivo and Ex Vivo: Myelin Contrast across Lamina at 7T MRI and Histology. NeuroImage. 2016;133:163–175. doi: 10.1016/j.neuroimage.2016.02.072. PubMed DOI

Lema Dopico A., Choi S., Hua J., Li X., Harrison D.M. Multi-Layer Analysis of Quantitative 7 T Magnetic Resonance Imaging in the Cortex of Multiple Sclerosis Patients Reveals Pathology Associated with Disability. Mult. Scler. J. 2021;27:2040–2051. doi: 10.1177/1352458521994556. PubMed DOI PMC

Barazany D., Assaf Y. Visualization of Cortical Lamination Patterns with Magnetic Resonance Imaging. Cereb. Cortex. 2012;22:2016–2023. doi: 10.1093/cercor/bhr277. PubMed DOI

Lifshits S., Tomer O., Shamir I., Barazany D., Tsarfaty G., Rosset S., Assaf Y. Resolution Considerations in Imaging of the Cortical Layers. NeuroImage. 2018;164:112–120. doi: 10.1016/j.neuroimage.2017.02.086. PubMed DOI

Shamir I., Tomer O., Baratz Z., Tsarfaty G., Faraggi M., Horowitz A., Assaf Y. A Framework for Cortical Laminar Composition Analysis Using Low-Resolution T1 MRI Images. Brain Struct. Funct. 2019;224:1457–1467. doi: 10.1007/s00429-019-01848-2. PubMed DOI

González Ballester M.Á., Zisserman A.P., Brady M. Estimation of the Partial Volume Effect in MRI. Med. Image Anal. 2002;6:389–405. doi: 10.1016/S1361-8415(02)00061-0. PubMed DOI

Barral J.K., Gudmundson E., Stikov N., Etezadi-Amoli M., Stoica P., Nishimura D.G. A Robust Methodology for In Vivo T1 Mapping. Magn. Reson. Med. 2010;64:1057–1067. doi: 10.1002/mrm.22497. PubMed DOI PMC

Istratov A., Vyvenko O. Exponential Analysis in Physical Phenomena. Rev. Sci. Instrum. 1999;70:1233–1257. doi: 10.1063/1.1149581. DOI

Mitchell J., Gladden L.F., Chandrasekera T.C., Fordham E.J. Low-Field Permanent Magnets for Industrial Process and Quality Control. Prog. Nucl. Magn. Reson. Spectrosc. 2014;76:1–60. doi: 10.1016/j.pnmrs.2013.09.001. PubMed DOI

Washburn K.E., McCarney E.R. Improved Quantification of Nuclear Magnetic Resonance Relaxometry Data via Partial Least Squares Analysis. Appl. Magn. Reson. 2018;49:429–464. doi: 10.1007/s00723-018-0991-4. DOI

Berman P., Levi O., Parmet Y., Saunders M., Wiesman Z. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods. Concepts Magn. Reson. Part A. 2013;42:72–88. doi: 10.1002/cmr.a.21263. PubMed DOI PMC

Fordham E.J., Venkataramanan L., Mitchell J., Valori A. What Are, and What Are Not, Inverse Laplace Transforms. Diffus. Fundam. 2018;29:1–8.

Wright P.J., Mougin O.E., Totman J.J., Peters A.M., Brookes M.J., Coxon R., Morris P.E., Clemence M., Francis S.T., Bowtell R.W., et al. Water Proton T1 Measurements in Brain Tissue at 7, 3, and 1.5 T Using IR-EPI, IR-TSE, and MPRAGE: Results and Optimization. Magn. Reson. Mater. Phys. Biol. Med. 2008;21:121–130. doi: 10.1007/s10334-008-0104-8. PubMed DOI

Bojorquez J.Z., Bricq S., Acquitter C., Brunotte F., Walker P.M., Lalande A. What Are Normal Relaxation Times of Tissues at 3 T? Magn. Reson. Imaging. 2017;35:69–80. doi: 10.1016/j.mri.2016.08.021. PubMed DOI

Liu F., Velikina J.V., Block W.F., Kijowski R., Samsonov A.A. Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model. IEEE Trans. Med. Imaging. 2017;36:527–537. doi: 10.1109/TMI.2016.2620961. PubMed DOI PMC

Conn A.R., Gould N.I.M., Toint P.L. Trust-Region Methods. Society for Industrial and Applied Mathematics; Philadelphia, PA, USA: 2000. (MPS-SIAM series on optimization).

Byrd R.H., Schnabel R.B., Shultz G.A. Approximate Solution of the Trust Region Problem by Minimization over Two-Dimensional Subspaces. Math. Program. 1988;40:247–263. doi: 10.1007/BF01580735. DOI

Coleman T.F., Li Y. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM J. Optim. 1996;6:418–445. doi: 10.1137/0806023. DOI

Gudbjartsson H., Patz S. The Rician Distribution of Noisy MRI Data. Magn. Reson. Med. 1995;34:910–914. doi: 10.1002/mrm.1910340618. PubMed DOI PMC

Sonderer C.M., Chen N. Improving the Accuracy, Quality, and Signal-To-Noise Ratio of MRI Parametric Mapping Using Rician Bias Correction and Parametric-Contrast-Matched Principal Component Analysis (PCM-PCA) Yale J. Biol. Med. 2018;91:207–214. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...