Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
UL1 TR001866
NCATS NIH HHS - United States
R01 AI088364
NIAID NIH HHS - United States
MR/S032304/1
Medical Research Council - United Kingdom
R01 AI127564
NIAID NIH HHS - United States
R01 AI163029
NIAID NIH HHS - United States
R37 AI097457
NIAID NIH HHS - United States
K01 AG072789
NIA NIH HHS - United States
PubMed
37938781
PubMed Central
PMC10665196
DOI
10.1038/s41586-023-06717-x
PII: 10.1038/s41586-023-06717-x
Knihovny.cz E-resources
- MeSH
- Gain of Function Mutation MeSH
- Polyendocrinopathies, Autoimmune MeSH
- Autoantibodies * immunology MeSH
- COVID-19 genetics immunology MeSH
- Thyroid Epithelial Cells metabolism pathology MeSH
- Genetic Predisposition to Disease * MeSH
- Heterozygote MeSH
- Interferon Type I * antagonists & inhibitors immunology MeSH
- NF-kappaB-Inducing Kinase MeSH
- Humans MeSH
- Loss of Function Mutation MeSH
- NF-kappa B p52 Subunit deficiency genetics MeSH
- NF-kappa B * deficiency genetics MeSH
- AIRE Protein MeSH
- I-kappa B Proteins deficiency genetics MeSH
- Thymus Gland abnormalities immunology pathology MeSH
- Pneumonia, Viral genetics immunology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Autoantibodies * MeSH
- Interferon Type I * MeSH
- NF-kappa B p52 Subunit MeSH
- NF-kappa B * MeSH
- I-kappa B Proteins MeSH
- RELB protein, human MeSH Browser
Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.
Anna Children's Cancer Research Institute Vienna Austria
Anna Children's Hospital Vienna Austria
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
Center for Molecular Medicine Department of Medicine Karolinska Institute Stockholm Sweden
Centre d'Immunologie et des Maladies Infectieuses Sorbonne Université INSERM U1135 Paris France
Centre Hospitalier Universitaire Estaing Clermont Ferrand France
Chan Zuckerberg Biohub San Francisco CA USA
Clinical Immunogenomics Research Consortium Australasia Darlinghurst New South Wales Australia
Clinical Immunology Department Saint Louis Hospital Paris France
CNR IRGB Milan Unit Milan Italy
CNRS UMR 5308 ENS UCBL Lyon France
Department of Anatomical Pathology The Alfred Hospital Prahran Victoria Australia
Department of Anesthesiology and Reanimation Selcuk University Faculty of Medicine Konya Turkey
Department of Biosciences and Nutrition Karolinska Institutet Stockholm Sweden
Department of Clinical Biochemistry and Immunology Addenbrooke's Hospital Cambridge UK
Department of Clinical Genetics Uppsala University Hospital Uppsala Sweden
Department of Endocrinology Metabolism and Diabetes Karolinska University Hospital Stockholm Sweden
Department of Immunology Allergy and HIV St Vincent's Hospital Sydney New South Wales Australia
Department of Immunology AP HP Pitié Salpêtrière Hospital Paris France
Department of Internal Medicine and Infectious Diseases Bordeaux Hospital University Bordeaux France
Department of Internal Medicine Edouard Herriot Hospital Lyon France
Department of Internal Medicine Hôpital Michallon CHU de Grenoble Alpes Grenoble France
Department of Medicine University of California San Francisco San Francisco CA USA
Department of Paediatrics Faculty of Medicine Comenius University Bratislava Bratislava Slovakia
Department of Pathology and Laboratory Medicine Nationwide Children's Hospital Columbus OH USA
Department of Pediatric Hematology Toulouse University Hospital Toulouse France
Department of Pediatric Immunology and Allergy Ankara University School of Medicine Ankara Turkey
Department of Pediatric Infectious Diseases Faculty of Medicine Selcuk University Konya Turkey
Department of Pediatrics and Adolescent Medicine Medical University of Vienna Vienna Austria
Department of Pediatrics and Public Health Università degli Studi di Torino Turin Italy
Department of Pediatrics Necker Hospital for Sick Children Paris France
Department of Rheumatology and Immunology Hannover Medical School Hannover Germany
Departments of Medicine and Pediatrics Mount Sinai School of Medicine New York NY USA
Dept Clinical Immunology and Allergy The Royal Melbourne Hospital Parkville Australia
Dept Medical Biology University of Melbourne Victoria Parkville Australia
Diabetes Center University of California San Francisco San Francisco CA USA
Division of Allergy and Immunology Children's National Medical Center Washington DC USA
Faculty of Medicine University of Sydney Sydney New South Wales Australia
French National Reference Center for Primary Immunodeficiencies Paris France
Garvan Institute of Medical Research Sydney New South Wales Australia
Hospital de Niños Roberto del Río Santiago Chile
Howard Hughes Medical Institute New York NY USA
Immunology and Allergy Queensland Children's Hospital South Brisbane Queensland Australia
Immunology Division Walter and Eliza Hall Institute Melbourne Victoria Australia
Immunopathology Federation LIFE Hospices Civils de Lyon Lyon France
Institute of Human Genetics University of Leipzig Medical Center Leipzig Germany
Internal Medicine Department Pitié Salpêtrière Hospital Paris France
IRCCS Humanitas Research Hospital Rozzano Italy
IRMAIC EA 7509 URCA Reims France
Joint Unit Hospices Civils de Lyon BioMérieux Lyon France
Laboratory of Human Genetics of Infectious Diseases Necker Branch INSERM UMR1163 Paris France
National Reference Center for Rheumatic Autoimmune and Systemic Diseases in Children Lyon France
Paris Cité University Imagine Institute Paris France
Paris Cité University Paris France
Pediatric Clinic Fondazione IRCCS Policlinico San Matteo Pavia Italy
Pediatric Department E Wolfson Medical Center Tel Aviv University Tel Aviv Israel
Pediatric Oncology Hematology Unit University Hospital Plurithématique CIC 1401 Bordeaux France
School of Clinical Medicine UNSW Medicine and Health Darlinghurst New South Wales Australia
Section of Microbiology University of Brescia Brescia Italy
Study Center for Immunodeficiencies Necker Hospital for Sick Children Paris France
Virology Cochin Saint Vincent de Paul Hospital University of Paris Paris France
Westmead Clinical School University of Sydney Sydney New South Wales Australia
See more in PubMed
Levin M. Anti-interferon auto-antibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 2006;3:e292. doi: 10.1371/journal.pmed.0030292. PubMed DOI PMC
Meager A, et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 2006;3:e289. doi: 10.1371/journal.pmed.0030289. PubMed DOI PMC
Bastard P, et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 2021;218:e20210554. doi: 10.1084/jem.20210554. PubMed DOI PMC
Puel A, Bastard P, Bustamante J, Casanova J-L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 2022;219:e20211387. doi: 10.1084/jem.20211387. PubMed DOI PMC
Mogensen KE, Daubas P, Gresser I, Sereni D, Varet B. Patient with circulating antibodies to alpha-interferon. Lancet. 1981;318:1227–1228. doi: 10.1016/S0140-6736(81)91460-4. PubMed DOI
Pozzetto, B., Mogensen, K. E., Tovey, M. G. & Gresser, I. Characteristics of autoantibodies to human interferon in a patient with varicella-zoster disease. J. Infect. Dis.150, 707–713 (1984). PubMed
Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 10.1126/sciimmunol.abl4340 (2021). PubMed PMC
Bastard, P. et al. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. Science10.1126/science.abd4585 (2020). PubMed PMC
Zhang Q, Bastard P, COVID Human Genetic Effort, Cobat A, Casanova J-L. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022;603:587–598. doi: 10.1038/s41586-022-04447-0. PubMed DOI PMC
Manry J, et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl Acad. Sci. USA. 2022;119:e2200413119. doi: 10.1073/pnas.2200413119. PubMed DOI PMC
Casanova, J. L. & Abel, L. Mechanisms of viral inflammation and disease in humans. Science374, 1080–1086 (2021). PubMed PMC
Bastard P, et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 2021;218:e20202486. doi: 10.1084/jem.20202486. PubMed DOI PMC
Zhang Q, et al. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J. Exp. Med. 2022;219:e20220514. doi: 10.1084/jem.20220514. PubMed DOI PMC
Alotaibi F, et al. Type I interferon autoantibodies in hospitalized patients with Middle East respiratory syndrome and association with outcomes and treatment effect of interferon beta‐1b in MIRACLE clinical trial. Influenza Other Respir. Viruses. 2023;17:e13116. doi: 10.1111/irv.13116. PubMed DOI PMC
Gervais A, et al. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in ∼40% of patients. J. Exp. Med. 2023;220:e20230661. doi: 10.1084/jem.20230661. PubMed DOI PMC
van der Wijst MGP, et al. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Sci. Transl. Med. 2021;13:eabh2624. doi: 10.1126/scitranslmed.abh2624. PubMed DOI PMC
Lopez J, et al. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J. Exp. Med. 2021;218:e20211211. doi: 10.1084/jem.20211211. PubMed DOI PMC
Cheng M, Anderson MS. Thymic tolerance as a key brake on autoimmunity. Nat. Immunol. 2018;19:659–664. doi: 10.1038/s41590-018-0128-9. PubMed DOI PMC
Anderson MS, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–1401. doi: 10.1126/science.1075958. PubMed DOI
Cavadini P, et al. AIRE deficiency in thymus of 2 patients with Omenn syndrome. J. Clin. Invest. 2005;115:728–732. doi: 10.1172/JCI200523087. PubMed DOI PMC
Poliani PL, et al. Early defects in human T-cell development severely affect distribution and maturation of thymic stromal cells: possible implications for the pathophysiology of Omenn syndrome. Blood. 2009;114:105–108. doi: 10.1182/blood-2009-03-211029. PubMed DOI PMC
De Ravin SS, et al. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood. 2010;116:1263–1271. doi: 10.1182/blood-2010-02-267583. PubMed DOI PMC
Hetemäki I, et al. Patients with autoimmune polyendocrine syndrome type 1 have an increased susceptibility to severe herpesvirus infections. Clin. Immunol. 2021;231:108851. doi: 10.1016/j.clim.2021.108851. PubMed DOI PMC
Rossi SW, et al. RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J. Exp. Med. 2007;204:1267–1272. doi: 10.1084/jem.20062497. PubMed DOI PMC
White AJ, et al. Sequential phases in the development of Aire-expressing medullary thymic epithelial cells involve distinct cellular input. Eur. J. Immunol. 2008;38:942–947. doi: 10.1002/eji.200738052. PubMed DOI
Akiyama T, et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity. 2008;29:423–437. doi: 10.1016/j.immuni.2008.06.015. PubMed DOI
Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017;17:545–558. doi: 10.1038/nri.2017.52. PubMed DOI PMC
Fusco AJ, et al. The NF-κB subunit RelB controls p100 processing by competing with the kinases NIK and IKK1 for binding to p100. Sci. Signal. 2016;9:ra96. doi: 10.1126/scisignal.aad9413. PubMed DOI
Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 2005;5:772–782. doi: 10.1038/nri1707. PubMed DOI
Burkly L, et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature. 1995;373:531–536. doi: 10.1038/373531a0. PubMed DOI
Wirasinha RC, et al. Nfkb2 variants reveal a p100-degradation threshold that defines autoimmune susceptibility. J. Exp. Med. 2021;218:e20200476. doi: 10.1084/jem.20200476. PubMed DOI PMC
Bautista JL, et al. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat. Commun. 2021;12:1096. doi: 10.1038/s41467-021-21346-6. PubMed DOI PMC
Tucker E, et al. A novel mutation in the Nfkb2 gene generates an NF-κB2 “super repressor”. J. Immunol. 2007;179:7514–7522. doi: 10.4049/jimmunol.179.11.7514. PubMed DOI
Jiang W, Anderson MS, Bronson R, Mathis D, Benoist C. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 2005;202:805–815. doi: 10.1084/jem.20050693. PubMed DOI PMC
Michelson DA, Hase K, Kaisho T, Benoist C, Mathis D. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell. 2022;185:2542–2558. doi: 10.1016/j.cell.2022.05.018. PubMed DOI PMC
Michelson DA, Mathis D. Thymic mimetic cells: tolerogenic masqueraders. Trends Immunol. 2022;43:782–791. doi: 10.1016/j.it.2022.07.010. PubMed DOI PMC
Yano M, et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J. Exp. Med. 2008;205:2827–2838. doi: 10.1084/jem.20080046. PubMed DOI PMC
Bornstein C, et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature. 2018;559:622–626. doi: 10.1038/s41586-018-0346-1. PubMed DOI
Kinoshita D, et al. Essential role of IκB kinase α in thymic organogenesis required for the establishment of self-tolerance1. J. Immunol. 2006;176:3995–4002. doi: 10.4049/jimmunol.176.7.3995. PubMed DOI
Kajiura F, et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J. Immunol. 2004;172:2067–2075. doi: 10.4049/jimmunol.172.4.2067. PubMed DOI
LaFlam TN, et al. Identification of a novel cis-regulatory element essential for immune tolerance. J. Exp. Med. 2015;212:1993–2002. doi: 10.1084/jem.20151069. PubMed DOI PMC
Koh AS, et al. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat. Immunol. 2018;19:162–172. doi: 10.1038/s41590-017-0032-8. PubMed DOI PMC
Kisand K, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 2010;207:299–308. doi: 10.1084/jem.20091669. PubMed DOI PMC
Puel A, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 2010;207:291–297. doi: 10.1084/jem.20091983. PubMed DOI PMC
Meyer S, et al. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell. 2016;166:582–595. doi: 10.1016/j.cell.2016.06.024. PubMed DOI PMC
Landegren N, et al. Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 1. Sci. Rep. 2016;6:20104. doi: 10.1038/srep20104. PubMed DOI PMC
Wang EY, et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep. Methods. 2022;2:100172. PubMed PMC
Bruserud Ø, et al. A longitudinal follow-up of autoimmune polyendocrine syndrome type 1. J. Clin. Endocrinol. Metab. 2016;101:2975–2983. doi: 10.1210/jc.2016-1821. PubMed DOI PMC
Ströbel P, et al. Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS-1) J. Pathol. 2007;211:563–571. doi: 10.1002/path.2141. PubMed DOI
Givony, T. et al. Thymic mimetic cells function beyond self-tolerance. Nature622, 164–172 (2023). PubMed
Weih F, Caamaño J. Regulation of secondary lymphoid organ development by the nuclear factor-κB signal transduction pathway. Immunol. Rev. 2003;195:91–105. doi: 10.1034/j.1600-065X.2003.00064.x. PubMed DOI
Perry JSA, et al. Distinct contributions of aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity. 2014;41:414–426. doi: 10.1016/j.immuni.2014.08.007. PubMed DOI PMC
Malchow S, et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science. 2013;339:1219–1224. doi: 10.1126/science.1233913. PubMed DOI PMC
Mathian, A. et al. Lower disease activity but higher risk of severe COVID-19 and herpes zoster in patients with systemic lupus erythematosus with pre-existing autoantibodies neutralising IFN-α. Ann. Rheum. Dis.10.1136/ard-2022-222549 (2022). PubMed
Meisel C, et al. Mild COVID-19 despite autoantibodies against type I IFNs in autoimmune polyendocrine syndrome type 1. J. Clin. Invest. 2021;131:e150867. doi: 10.1172/JCI150867. PubMed DOI PMC
Kuehn HS, et al. Novel nonsense gain-of-function NFKB2 mutations associated with a combined immunodeficiency phenotype. Blood. 2017;130:1553–1564. doi: 10.1182/blood-2017-05-782177. PubMed DOI PMC
Willmann KL, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat. Commun. 2014;5:5360. doi: 10.1038/ncomms6360. PubMed DOI PMC
Warnatz K, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc. Natl Acad. Sci. USA. 2009;106:13945–13950. doi: 10.1073/pnas.0903543106. PubMed DOI PMC
Sharfe N, et al. The effects of RelB deficiency on lymphocyte development and function. J. Autoimmun. 2015;65:90–100. doi: 10.1016/j.jaut.2015.09.001. PubMed DOI
Merico D, Sharfe N, Hu P, Herbrick J-A, Roifman CM. RelB deficiency causes combined immunodeficiency. LymphoSign J. 2015;2:147–155. doi: 10.14785/lpsn-2015-0005. DOI
Sharfe, N. et al. NFκB pathway dysregulation due to reduced RelB expression leads to severe autoimmune disorders and declining immunity. J. Autoimmun.10.1016/j.jaut.2022.102946 (2022). PubMed PMC
Tangye, S. G. et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J. Clin. Immunol.10.1007/s10875-022-01289-3 (2022). PubMed PMC
Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science10.1126/science.abd4570 (2020). PubMed PMC
Li J, et al. Biochemically deleterious human NFKB1 variants underlie an autosomal dominant form of common variable immunodeficiency. J. Exp. Med. 2021;218:e20210566. doi: 10.1084/jem.20210566. PubMed DOI PMC
Vazquez SE, et al. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq. eLife. 2020;9:e55053. doi: 10.7554/eLife.55053. PubMed DOI PMC
Abolhassani H, et al. X-linked TLR7 deficiency underlies critical COVID-19 pneumonia in a male patient with ataxia-telangiectasia. J. Clin. Immunol. 2022;42:1–9. doi: 10.1007/s10875-021-01151-y. PubMed DOI PMC
Pescarmona R, et al. Comparison of RT-qPCR and Nanostring in the measurement of blood interferon response for the diagnosis of type I interferonopathies. Cytokine. 2019;113:446–452. doi: 10.1016/j.cyto.2018.10.023. PubMed DOI
Slade CA, et al. Fatal enteroviral encephalitis in a patient with common variable immunodeficiency harbouring a novel mutation in NFKB2. J. Clin. Immunol. 2019;39:324–335. doi: 10.1007/s10875-019-00602-x. PubMed DOI
Miller CN, et al. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature. 2018;559:627–631. doi: 10.1038/s41586-018-0345-2. PubMed DOI PMC
Rackaityte, E. et al. Validation of a murine proteome-wide phage display library for the identification of autoantibody specificities. Preprint at bioRxiv10.1101/2023.04.07.535899 (2023). PubMed PMC
Altman MC, et al. Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data. Nat. Commun. 2021;12:4385. doi: 10.1038/s41467-021-24584-w. PubMed DOI PMC
Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients