Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-33136A
Ministry of Health Czech Republic
PubMed
35054191
PubMed Central
PMC8774564
DOI
10.3390/diagnostics12010024
PII: diagnostics12010024
Knihovny.cz E-resources
- Keywords
- MR imaging, brain imaging, cortical layers, mathematical modeling, optimization algorithm,
- Publication type
- Journal Article MeSH
Pathological changes in the cortical lamina can cause several mental disorders. Visualization of these changes in vivo would enhance their diagnostics. Recently a framework for visualizing cortical structures by magnetic resonance imaging (MRI) has emerged. This is based on mathematical modeling of multi-component T1 relaxation at the sub-voxel level. This work proposes a new approach for their estimation. The approach is validated using simulated data. Sixteen MRI experiments were carried out on healthy volunteers. A modified echo-planar imaging (EPI) sequence was used to acquire 105 individual volumes. Data simulating the images were created, serving as the ground truth. The model was fitted to the data using a modified Trust Region algorithm. In single voxel experiments, the estimation accuracy of the T1 relaxation times depended on the number of optimization starting points and the level of noise. A single starting point resulted in a mean percentage error (MPE) of 6.1%, while 100 starting points resulted in a perfect fit. The MPE was <5% for the signal-to-noise ratio (SNR) ≥ 38 dB. Concerning multiple voxel experiments, the MPE was <5% for all components. Estimation of T1 relaxation times can be achieved using the modified algorithm with MPE < 5%.
See more in PubMed
Brodmann K. Vergleichende Lokalisationslehre der Großhirnrinde in Ihren Prinzipeien Dargestellt auf Grund des Zellenbaues. Barth; Leipzig, Germany: 1909.
Von Economo C., Triarhou L.C. Cellular Structure of the Human Cerebral Cortex. Karger Medical and Scientific Publishers; Basel, Switzerland: 2009. DOI
Clark V.P., Courchesne E., Grafe M. In Vivo Myeloarchitectonic Analysis of Human Striate and Extrastriate Cortex Using Magnetic Resonance Imaging. Cereb. Cortex. 1992;2:417–424. doi: 10.1093/cercor/2.5.417. PubMed DOI
Clare S., Jezzard P., Matthews P. Identification of the Myelinated Layers in Striate Cortex on High Resolution MRI at 3 Tesla; Proceedings of the 10th Annual Meeting of ISMRM; Honolulu, HI, USA. 18–24 May 2002; p. 1465.
Bridge H., Clare S., Jenkinson M., Jezzard P., Parker A.J., Matthews P.M. Independent Anatomical and Functional Measures of the V1/V2 Boundary in Human Visual Cortex. J. Vis. 2005;5:93–102. doi: 10.1167/5.2.1. PubMed DOI
Clare S., Bridge H. Methodological Issues Relating to in Vivo Cortical Myelography Using MRI. Hum. Brain Mapp. 2005;26:240–250. doi: 10.1002/hbm.20162. PubMed DOI PMC
Turner R., Oros-Peusquens A.-M., Romanzetti S., Zilles K., Shah N.J. Optimised in Vivo Visualisation of Cortical Structures in the Human Brain at 3 T Using IR-TSE. Magn. Reson. Imaging. 2008;26:935–942. doi: 10.1016/j.mri.2008.01.043. PubMed DOI
Duyn J.H., van Gelderen P., Li T.-Q., de Zwart J.A., Koretsky A.P., Fukunaga M. High-Field MRI of Brain Cortical Substructure Based on Signal Phase. Proc. Natl. Acad. Sci. USA. 2007;104:11796–11801. doi: 10.1073/pnas.0610821104. PubMed DOI PMC
Trampel R., Ott D.V.M., Turner R. Do the Congenitally Blind Have a Stria of Gennari? First Intracortical Insights In Vivo. Cereb. Cortex. 2011;21:2075–2081. doi: 10.1093/cercor/bhq282. PubMed DOI
Sánchez-Panchuelo R.M., Francis S.T., Schluppeck D., Bowtell R.W. Correspondence of Human Visual Areas Identified Using Functional and Anatomical MRI In Vivo at 7 T. J. Magn. Reson. Imaging. 2012;35:287–299. doi: 10.1002/jmri.22822. PubMed DOI
Walters N.B., Egan G.F., Kril J.J., Kean M., Waley P., Jenkinson M., Watson J.D.G. In Vivo Identification of Human Cortical Areas Using High-Resolution MRI: An Approach to Cerebral Structure-Function Correlation. Proc. Natl. Acad. Sci. USA. 2003;100:2981–2986. doi: 10.1073/pnas.0437896100. PubMed DOI PMC
Dick F., Tierney A.T., Lutti A., Josephs O., Sereno M.I., Weiskopf N. In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas. J. Neurosci. 2012;32:16095–16105. doi: 10.1523/JNEUROSCI.1712-12.2012. PubMed DOI PMC
Zwanenburg J.J.M., Hendrikse J., Luijten P.R. Generalized Multiple-Layer Appearance of the Cerebral Cortex with 3D FLAIR 7.0-T MR Imaging. Radiology. 2012;262:995–1001. doi: 10.1148/radiol.11110812. PubMed DOI
De Martino F., Moerel M., Xu J., van de Moortele P.-F., Ugurbil K., Goebel R., Yacoub E., Formisano E. High-Resolution Mapping of Myeloarchitecture In Vivo: Localization of Auditory Areas in the Human Brain. Cereb. Cortex. 2015;25:3394–3405. doi: 10.1093/cercor/bhu150. PubMed DOI PMC
Fracasso A., van Veluw S.J., Visser F., Luijten P.R., Spliet W., Zwanenburg J.J.M., Dumoulin S.O., Petridou N. Lines of Baillarger in Vivo and Ex Vivo: Myelin Contrast across Lamina at 7T MRI and Histology. NeuroImage. 2016;133:163–175. doi: 10.1016/j.neuroimage.2016.02.072. PubMed DOI
Lema Dopico A., Choi S., Hua J., Li X., Harrison D.M. Multi-Layer Analysis of Quantitative 7 T Magnetic Resonance Imaging in the Cortex of Multiple Sclerosis Patients Reveals Pathology Associated with Disability. Mult. Scler. J. 2021;27:2040–2051. doi: 10.1177/1352458521994556. PubMed DOI PMC
Barazany D., Assaf Y. Visualization of Cortical Lamination Patterns with Magnetic Resonance Imaging. Cereb. Cortex. 2012;22:2016–2023. doi: 10.1093/cercor/bhr277. PubMed DOI
Lifshits S., Tomer O., Shamir I., Barazany D., Tsarfaty G., Rosset S., Assaf Y. Resolution Considerations in Imaging of the Cortical Layers. NeuroImage. 2018;164:112–120. doi: 10.1016/j.neuroimage.2017.02.086. PubMed DOI
Shamir I., Tomer O., Baratz Z., Tsarfaty G., Faraggi M., Horowitz A., Assaf Y. A Framework for Cortical Laminar Composition Analysis Using Low-Resolution T1 MRI Images. Brain Struct. Funct. 2019;224:1457–1467. doi: 10.1007/s00429-019-01848-2. PubMed DOI
González Ballester M.Á., Zisserman A.P., Brady M. Estimation of the Partial Volume Effect in MRI. Med. Image Anal. 2002;6:389–405. doi: 10.1016/S1361-8415(02)00061-0. PubMed DOI
Barral J.K., Gudmundson E., Stikov N., Etezadi-Amoli M., Stoica P., Nishimura D.G. A Robust Methodology for In Vivo T1 Mapping. Magn. Reson. Med. 2010;64:1057–1067. doi: 10.1002/mrm.22497. PubMed DOI PMC
Istratov A., Vyvenko O. Exponential Analysis in Physical Phenomena. Rev. Sci. Instrum. 1999;70:1233–1257. doi: 10.1063/1.1149581. DOI
Mitchell J., Gladden L.F., Chandrasekera T.C., Fordham E.J. Low-Field Permanent Magnets for Industrial Process and Quality Control. Prog. Nucl. Magn. Reson. Spectrosc. 2014;76:1–60. doi: 10.1016/j.pnmrs.2013.09.001. PubMed DOI
Washburn K.E., McCarney E.R. Improved Quantification of Nuclear Magnetic Resonance Relaxometry Data via Partial Least Squares Analysis. Appl. Magn. Reson. 2018;49:429–464. doi: 10.1007/s00723-018-0991-4. DOI
Berman P., Levi O., Parmet Y., Saunders M., Wiesman Z. Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods. Concepts Magn. Reson. Part A. 2013;42:72–88. doi: 10.1002/cmr.a.21263. PubMed DOI PMC
Fordham E.J., Venkataramanan L., Mitchell J., Valori A. What Are, and What Are Not, Inverse Laplace Transforms. Diffus. Fundam. 2018;29:1–8.
Wright P.J., Mougin O.E., Totman J.J., Peters A.M., Brookes M.J., Coxon R., Morris P.E., Clemence M., Francis S.T., Bowtell R.W., et al. Water Proton T1 Measurements in Brain Tissue at 7, 3, and 1.5 T Using IR-EPI, IR-TSE, and MPRAGE: Results and Optimization. Magn. Reson. Mater. Phys. Biol. Med. 2008;21:121–130. doi: 10.1007/s10334-008-0104-8. PubMed DOI
Bojorquez J.Z., Bricq S., Acquitter C., Brunotte F., Walker P.M., Lalande A. What Are Normal Relaxation Times of Tissues at 3 T? Magn. Reson. Imaging. 2017;35:69–80. doi: 10.1016/j.mri.2016.08.021. PubMed DOI
Liu F., Velikina J.V., Block W.F., Kijowski R., Samsonov A.A. Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model. IEEE Trans. Med. Imaging. 2017;36:527–537. doi: 10.1109/TMI.2016.2620961. PubMed DOI PMC
Conn A.R., Gould N.I.M., Toint P.L. Trust-Region Methods. Society for Industrial and Applied Mathematics; Philadelphia, PA, USA: 2000. (MPS-SIAM series on optimization).
Byrd R.H., Schnabel R.B., Shultz G.A. Approximate Solution of the Trust Region Problem by Minimization over Two-Dimensional Subspaces. Math. Program. 1988;40:247–263. doi: 10.1007/BF01580735. DOI
Coleman T.F., Li Y. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM J. Optim. 1996;6:418–445. doi: 10.1137/0806023. DOI
Gudbjartsson H., Patz S. The Rician Distribution of Noisy MRI Data. Magn. Reson. Med. 1995;34:910–914. doi: 10.1002/mrm.1910340618. PubMed DOI PMC
Sonderer C.M., Chen N. Improving the Accuracy, Quality, and Signal-To-Noise Ratio of MRI Parametric Mapping Using Rician Bias Correction and Parametric-Contrast-Matched Principal Component Analysis (PCM-PCA) Yale J. Biol. Med. 2018;91:207–214. PubMed PMC