The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/G/1596/2019
Grant Agency of Masaryk University in Brno, Czech Republic
PubMed
35055269
PubMed Central
PMC8778053
DOI
10.3390/nano12020243
PII: nano12020243
Knihovny.cz E-zdroje
- Klíčová slova
- noisy quantum processors, quantum chemistry, variational quantum eigensolver,
- Publikační typ
- časopisecké články MeSH
New approaches into computational quantum chemistry can be developed through the use of quantum computing. While universal, fault-tolerant quantum computers are still not available, and we want to utilize today's noisy quantum processors. One of their flagship applications is the variational quantum eigensolver (VQE)-an algorithm for calculating the minimum energy of a physical Hamiltonian. In this study, we investigate how various types of errors affect the VQE and how to efficiently use the available resources to produce precise computational results. We utilize a simulator of a noisy quantum device, an exact statevector simulator, and physical quantum hardware to study the VQE algorithm for molecular hydrogen. We find that the optimal method of running the hybrid classical-quantum optimization is to: (i) allow some noise in intermediate energy evaluations, using fewer shots per step and fewer optimization iterations, but ensure a high final readout precision; (ii) emphasize efficient problem encoding and ansatz parametrization; and (iii) run all experiments within a short time-frame, avoiding parameter drift with time. Nevertheless, current publicly available quantum resources are still very noisy and scarce/expensive, and even when using them efficiently, it is quite difficult to perform trustworthy calculations of molecular energies.
Institute of Computer Science Masaryk University Šumavská 416 CZ 602 00 Brno Czech Republic
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 CZ 616 62 Brno Czech Republic
Institute of Physics Slovak Academy of Sciences Dúbravská cesta 9 SK 841 04 Bratislava Slovakia
Zobrazit více v PubMed
Baiardi A., Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys. 2020;152:040903. doi: 10.1063/1.5129672. PubMed DOI
Bowler D.R., Miyazaki T. O(N) methods in electronic structure calculations. Rep. Prog. Phys. 2012;75:036503. doi: 10.1088/0034-4885/75/3/036503. PubMed DOI
Montanaro A. Quantum speedup of Monte Carlo methods: Table 1. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015;471 doi: 10.1098/rspa.2015.0301. PubMed DOI PMC
Friesner R.A. Ab initio quantum chemistry: Methodology and applications. Proc. Natl. Acad. Sci. USA. 2005;102:6648–6653. doi: 10.1073/pnas.0408036102. PubMed DOI PMC
Helgaker T., Klopper W., Tew D.P. Quantitative quantum chemistry. Mol. Phys. 2008;106:2107–2143. doi: 10.1080/00268970802258591. DOI
Cremer D. Møller–Plesset perturbation theory: From small molecule methods to methods for thousands of atoms. WIREs Comput. Mol. Sci. 2011;1:509–530. doi: 10.1002/wcms.58. DOI
Lyakh D.I., Musiał M., Lotrich V.F., Bartlett R.J. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem. Rev. 2012;112:182–243. doi: 10.1021/cr2001417. PubMed DOI
Yu H.S., Li S.L., Truhlar D.G. Perspective: Kohn-Sham density functional theory descending a staircase. J. Chem. Phys. 2016;145:130901. doi: 10.1063/1.4963168. PubMed DOI
Mardirossian N., Head-Gordon M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017;115:2315–2372. doi: 10.1080/00268976.2017.1333644. DOI
Feynman R. Simulating physics with computers. Int. J. Theor. Phys. 1982;21:467–488. doi: 10.1007/BF02650179. DOI
Jordan S. Quantum Algorithm ZOO. [(accessed on 11 November 2021)]. Available online: https://quantumalgorithmzoo.org/
Abhijith J., Adedoyin A., Ambrosiano J., Anisimov P., Bärtschi A., Casper W., Chennupati G., Coffrin C., Djidjev H., Gunter D., et al. Quantum Algorithm Implementations for Beginners. arXiv. 20181804.03719
Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition. 10th ed. Cambridge University Press; Cambridge, CA, USA: 2011.
Degen C.L., Reinhard F., Cappellaro P. Quantum sensing. Rev. Mod. Phys. 2017;89:035002. doi: 10.1103/RevModPhys.89.035002. DOI
Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography. Rev. Mod. Phys. 2002;74:145–195. doi: 10.1103/RevModPhys.74.145. DOI
Xu F., Ma X., Zhang Q., Lo H.K., Pan J.W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020;92:025002. doi: 10.1103/RevModPhys.92.025002. DOI
Herrero-Collantes M., Garcia-Escartin J.C. Quantum random number generators. Rev. Mod. Phys. 2017;89:015004. doi: 10.1103/RevModPhys.89.015004. DOI
Arute F., Arya K., Babbush R., Bacon D., Bardin J.C., Barends R., Biswas R., Boixo S., Brandao F.G.S.L., Buell D.A., et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574:505–510. doi: 10.1038/s41586-019-1666-5. PubMed DOI
Wu Y., Bao W.S., Cao S., Chen F., Chen M.C., Chen X., Chung T.H., Deng H., Du Y., Fan D., et al. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Phys. Rev. Lett. 2021;127:180501. doi: 10.1103/PhysRevLett.127.180501. PubMed DOI
Zhong H.S., Deng Y.H., Qin J., Wang H., Chen M.C., Peng L.C., Luo Y.H., Wu D., Gong S.Q., Su H., et al. Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. Phys. Rev. Lett. 2021;127:180502. doi: 10.1103/PhysRevLett.127.180502. PubMed DOI
Cao Y., Romero J., Olson J.P., Degroote M., Johnson P.D., Kieferová M., Kivlichan I.D., Menke T., Peropadre B., Sawaya N.P.D., et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019;119:10856–10915. doi: 10.1021/acs.chemrev.8b00803. PubMed DOI
Peruzzo A., McClean J., Shadbolt P., Yung M.H., Zhou X.Q., Love P., Aspuru-Guzik A., O’Brien J. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014;5:4213. doi: 10.1038/ncomms5213. PubMed DOI PMC
O’Malley P.J.J., Babbush R., Kivlichan I.D., Romero J., McClean J.R., Barends R., Kelly J., Roushan P., Tranter A., Ding N., et al. Scalable Quantum Simulation of Molecular Energies. Phys. Rev. X. 2016;6:031007. doi: 10.1103/PhysRevX.6.031007. DOI
Bloch F. Generalized theory of relaxation. Phys. Rev. 1957;105:1206–1222. doi: 10.1103/PhysRev.105.1206. DOI
Krantz P., Kjaergaard M., Yan F., Orlando T.P., Gustavsson S., Oliver W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 2019;6:021318. doi: 10.1063/1.5089550. DOI
Preskill J. Quantum Computing in the NISQ era and beyond. Quantum. 2018;2:79. doi: 10.22331/q-2018-08-06-79. DOI
Kandala A., Mezzacapo A., Temme K., Takita M., Brink M., Chow J.M., Gambetta J.M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 2017;549:242–246. doi: 10.1038/nature23879. PubMed DOI
Kandala A., Temme K., Córcoles A.D., Mezzacapo A., Chow J.M., Gambetta J.M. Error mitigation extends the computational reach of a noisy quantum processor. Nature. 2019;567:491–495. doi: 10.1038/s41586-019-1040-7. PubMed DOI
Temme K., Bravyi S., Gambetta J.M. Error Mitigation for Short-Depth Quantum Circuits. Phys. Rev. Lett. 2017;119:180509. doi: 10.1103/PhysRevLett.119.180509. PubMed DOI
Endo S., Benjamin S.C., Li Y. Practical Quantum Error Mitigation for Near-Future Applications. Phys. Rev. X. 2018;8:031027. doi: 10.1103/PhysRevX.8.031027. DOI
Geller M.R., Sun M. Toward efficient correction of multiqubit measurement errors: Pair correlation method. Quantum Sci. Technol. 2021;6:025009. doi: 10.1088/2058-9565/abd5c9. DOI
Bravyi S., Sheldon S., Kandala A., Mckay D.C., Gambetta J.M. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A. 2021;103 doi: 10.1103/PhysRevA.103.042605. DOI
Nachman B., Urbanek M., de Jong W.A., Bauer C.W. Unfolding quantum computer readout noise. NPJ Quantum Inf. 2020;6:Art. doi: 10.1038/s41534-020-00309-7. DOI
Maciejewski F.B., Zimborás Z., Oszmaniec M. Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography. Quantum. 2020;4:257. doi: 10.22331/q-2020-04-24-257. DOI
Cai Z. Quantum Error Mitigation using Symmetry Expansion. Quantum. 2021;5:548. doi: 10.22331/q-2021-09-21-548. DOI
Suchsland P., Tacchino F., Fischer M.H., Neupert T., Barkoutsos P.K., Tavernelli I. Algorithmic Error Mitigation Scheme for Current Quantum Processors. Quantum. 2021;5:492. doi: 10.22331/q-2021-07-01-492. DOI
McArdle S., Endo S., Aspuru-Guzik A., Benjamin S., Yuan X. Quantum computational chemistry. Rev. Mod. Phys. 2020;92:15003. doi: 10.1103/RevModPhys.92.015003. DOI
Bravyi S., Gambetta J.M., Mezzacapo A., Temme K. Tapering off qubits to simulate fermionic Hamiltonians. arXiv. 20171701.08213
Bravyi S., Kitaev A. Fermionic quantum computation. Ann. Phys. 2002;298:210–226. doi: 10.1006/aphy.2002.6254. DOI
Jordan P., Wigner E. Über das Paulische Äquivalenzverbot. Z. Phys. 1928;47:631–651. doi: 10.1007/BF01331938. DOI
Qiskit: An Open-Source Framework for Quantum Computing. [(accessed on 4 January 2021)]. Available online: https://qiskit.org/
Miháliková I. Implementation of the Variational Quantum Eigensolver. 2021. [(accessed on 11 November 2021)]. Available online: https://github.com/imihalik/VQE_H2.
VQE Tutorial. [(accessed on 1 November 2021)]. Available online: https://pennylane.ai/qml/demos/tutorial_vqe.html.
Qiskit’s Chemistry Module. [(accessed on 4 January 2021)]. Available online: https://qiskit.org/documentation/apidoc/qiskit_chemistry.html.
Spall J.C. Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation. IEEE Trans. Autom. Control. 1992;37:332–341. doi: 10.1109/9.119632. DOI
Spall J. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 1998;34:817–823. doi: 10.1109/7.705889. DOI
Spall J.C. An Overview of the Simultaneous Perturbation Method for Efficient Optimization. Johns Hopkins Apl Tech. Dig. 1998;19:482–492.
Havlíček V., Córcoles A., Temme K., Harrow A., Kandala A., Chow J., Gambetta J. Supervised learning with quantum-enhanced feature spaces. Nature. 2019;567:209–212. doi: 10.1038/s41586-019-0980-2. PubMed DOI
IBM Quantum. [(accessed on 4 November 2021)]. Available online: https://quantum-computing.ibm.com/
Least Square Fitting Error Mitigation. [(accessed on 2 November 2021)]. Available online: https://qiskit.org/textbook/ch-quantum-hardware/measurement-error-mitigation.html.
Amazon Braket Pricing. [(accessed on 1 November 2021)]. Available online: https://aws.amazon.com/braket/pricing/
Tukey J.W. Exploratory Data Analysis. Addison-Wesley; Boston, MA, USA: 1977.
Letham B., Karrer B., Ottoni G., Bakshy E. Constrained Bayesian Optimization with Noisy Experiments. arXiv. 2017 doi: 10.1214/18-BA1110.1706.07094 DOI
Frazier P. A Tutorial on Bayesian Optimization. arXiv. 20181807.02811
Powell M.J.D. The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo G., Roma M., editors. Large-Scale Nonlinear Optimization. Springer; Boston, MA, USA: 2006. pp. 255–297. DOI
Powell M.J.D. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation. In: Gomez S., Hennart J.P., editors. Advances in Optimization and Numerical Analysis. Springer; Dordrecht, The Netherlands: 1994. pp. 51–67. DOI
Derby C., Klassen J., Bausch J., Cubitt T. Compact fermion to qubit mappings. Phys. Rev. B. 2021;104:035118. doi: 10.1103/PhysRevB.104.035118. DOI
Lee J., Berry D.W., Gidney C., Huggins W.J., McClean J.R., Wiebe N., Babbush R. Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction. PRX Quantum. 2021;2:030305. doi: 10.1103/PRXQuantum.2.030305. DOI
Cerezo M., Sone A., Volkoff T., Cincio L., Coles P.J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 2021;12:1791. doi: 10.1038/s41467-021-21728-w. PubMed DOI PMC
Funcke L., Hartung T., Jansen K., Kühn S., Stornati P. Dimensional Expressivity Analysis of Parametric Quantum Circuits. Quantum. 2021;5:422. doi: 10.22331/q-2021-03-29-422. DOI
Nakaji K., Yamamoto N. Expressibility of the alternating layered ansatz for quantum computation. Quantum. 2021;5:434. doi: 10.22331/q-2021-04-19-434. DOI
Jaccard P. The distribution of the flora IN the alpine ZONE.1. New Phytol. 1912;11:37–50. doi: 10.1111/j.1469-8137.1912.tb05611.x. DOI
Tanimoto T.T. An Elementary Mathematical theory of Classification and Prediction. International Business Machines Corporation; New York, NY, USA: 1958. p. 8. Internal IBM Technical Report.
Meta-optimization of resources on quantum computers
Best-Practice Aspects of Quantum-Computer Calculations: A Case Study of the Hydrogen Molecule