The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry

. 2022 Jan 14 ; 12 (2) : . [epub] 20220114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35055269

Grantová podpora
MUNI/G/1596/2019 Grant Agency of Masaryk University in Brno, Czech Republic

New approaches into computational quantum chemistry can be developed through the use of quantum computing. While universal, fault-tolerant quantum computers are still not available, and we want to utilize today's noisy quantum processors. One of their flagship applications is the variational quantum eigensolver (VQE)-an algorithm for calculating the minimum energy of a physical Hamiltonian. In this study, we investigate how various types of errors affect the VQE and how to efficiently use the available resources to produce precise computational results. We utilize a simulator of a noisy quantum device, an exact statevector simulator, and physical quantum hardware to study the VQE algorithm for molecular hydrogen. We find that the optimal method of running the hybrid classical-quantum optimization is to: (i) allow some noise in intermediate energy evaluations, using fewer shots per step and fewer optimization iterations, but ensure a high final readout precision; (ii) emphasize efficient problem encoding and ansatz parametrization; and (iii) run all experiments within a short time-frame, avoiding parameter drift with time. Nevertheless, current publicly available quantum resources are still very noisy and scarce/expensive, and even when using them efficiently, it is quite difficult to perform trustworthy calculations of molecular energies.

Zobrazit více v PubMed

Baiardi A., Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys. 2020;152:040903. doi: 10.1063/1.5129672. PubMed DOI

Bowler D.R., Miyazaki T. O(N) methods in electronic structure calculations. Rep. Prog. Phys. 2012;75:036503. doi: 10.1088/0034-4885/75/3/036503. PubMed DOI

Montanaro A. Quantum speedup of Monte Carlo methods: Table 1. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015;471 doi: 10.1098/rspa.2015.0301. PubMed DOI PMC

Friesner R.A. Ab initio quantum chemistry: Methodology and applications. Proc. Natl. Acad. Sci. USA. 2005;102:6648–6653. doi: 10.1073/pnas.0408036102. PubMed DOI PMC

Helgaker T., Klopper W., Tew D.P. Quantitative quantum chemistry. Mol. Phys. 2008;106:2107–2143. doi: 10.1080/00268970802258591. DOI

Cremer D. Møller–Plesset perturbation theory: From small molecule methods to methods for thousands of atoms. WIREs Comput. Mol. Sci. 2011;1:509–530. doi: 10.1002/wcms.58. DOI

Lyakh D.I., Musiał M., Lotrich V.F., Bartlett R.J. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem. Rev. 2012;112:182–243. doi: 10.1021/cr2001417. PubMed DOI

Yu H.S., Li S.L., Truhlar D.G. Perspective: Kohn-Sham density functional theory descending a staircase. J. Chem. Phys. 2016;145:130901. doi: 10.1063/1.4963168. PubMed DOI

Mardirossian N., Head-Gordon M. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017;115:2315–2372. doi: 10.1080/00268976.2017.1333644. DOI

Feynman R. Simulating physics with computers. Int. J. Theor. Phys. 1982;21:467–488. doi: 10.1007/BF02650179. DOI

Jordan S. Quantum Algorithm ZOO. [(accessed on 11 November 2021)]. Available online: https://quantumalgorithmzoo.org/

Abhijith J., Adedoyin A., Ambrosiano J., Anisimov P., Bärtschi A., Casper W., Chennupati G., Coffrin C., Djidjev H., Gunter D., et al. Quantum Algorithm Implementations for Beginners. arXiv. 20181804.03719

Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition. 10th ed. Cambridge University Press; Cambridge, CA, USA: 2011.

Degen C.L., Reinhard F., Cappellaro P. Quantum sensing. Rev. Mod. Phys. 2017;89:035002. doi: 10.1103/RevModPhys.89.035002. DOI

Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography. Rev. Mod. Phys. 2002;74:145–195. doi: 10.1103/RevModPhys.74.145. DOI

Xu F., Ma X., Zhang Q., Lo H.K., Pan J.W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020;92:025002. doi: 10.1103/RevModPhys.92.025002. DOI

Herrero-Collantes M., Garcia-Escartin J.C. Quantum random number generators. Rev. Mod. Phys. 2017;89:015004. doi: 10.1103/RevModPhys.89.015004. DOI

Arute F., Arya K., Babbush R., Bacon D., Bardin J.C., Barends R., Biswas R., Boixo S., Brandao F.G.S.L., Buell D.A., et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574:505–510. doi: 10.1038/s41586-019-1666-5. PubMed DOI

Wu Y., Bao W.S., Cao S., Chen F., Chen M.C., Chen X., Chung T.H., Deng H., Du Y., Fan D., et al. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Phys. Rev. Lett. 2021;127:180501. doi: 10.1103/PhysRevLett.127.180501. PubMed DOI

Zhong H.S., Deng Y.H., Qin J., Wang H., Chen M.C., Peng L.C., Luo Y.H., Wu D., Gong S.Q., Su H., et al. Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. Phys. Rev. Lett. 2021;127:180502. doi: 10.1103/PhysRevLett.127.180502. PubMed DOI

Cao Y., Romero J., Olson J.P., Degroote M., Johnson P.D., Kieferová M., Kivlichan I.D., Menke T., Peropadre B., Sawaya N.P.D., et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019;119:10856–10915. doi: 10.1021/acs.chemrev.8b00803. PubMed DOI

Peruzzo A., McClean J., Shadbolt P., Yung M.H., Zhou X.Q., Love P., Aspuru-Guzik A., O’Brien J. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014;5:4213. doi: 10.1038/ncomms5213. PubMed DOI PMC

O’Malley P.J.J., Babbush R., Kivlichan I.D., Romero J., McClean J.R., Barends R., Kelly J., Roushan P., Tranter A., Ding N., et al. Scalable Quantum Simulation of Molecular Energies. Phys. Rev. X. 2016;6:031007. doi: 10.1103/PhysRevX.6.031007. DOI

Bloch F. Generalized theory of relaxation. Phys. Rev. 1957;105:1206–1222. doi: 10.1103/PhysRev.105.1206. DOI

Krantz P., Kjaergaard M., Yan F., Orlando T.P., Gustavsson S., Oliver W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 2019;6:021318. doi: 10.1063/1.5089550. DOI

Preskill J. Quantum Computing in the NISQ era and beyond. Quantum. 2018;2:79. doi: 10.22331/q-2018-08-06-79. DOI

Kandala A., Mezzacapo A., Temme K., Takita M., Brink M., Chow J.M., Gambetta J.M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. 2017;549:242–246. doi: 10.1038/nature23879. PubMed DOI

Kandala A., Temme K., Córcoles A.D., Mezzacapo A., Chow J.M., Gambetta J.M. Error mitigation extends the computational reach of a noisy quantum processor. Nature. 2019;567:491–495. doi: 10.1038/s41586-019-1040-7. PubMed DOI

Temme K., Bravyi S., Gambetta J.M. Error Mitigation for Short-Depth Quantum Circuits. Phys. Rev. Lett. 2017;119:180509. doi: 10.1103/PhysRevLett.119.180509. PubMed DOI

Endo S., Benjamin S.C., Li Y. Practical Quantum Error Mitigation for Near-Future Applications. Phys. Rev. X. 2018;8:031027. doi: 10.1103/PhysRevX.8.031027. DOI

Geller M.R., Sun M. Toward efficient correction of multiqubit measurement errors: Pair correlation method. Quantum Sci. Technol. 2021;6:025009. doi: 10.1088/2058-9565/abd5c9. DOI

Bravyi S., Sheldon S., Kandala A., Mckay D.C., Gambetta J.M. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A. 2021;103 doi: 10.1103/PhysRevA.103.042605. DOI

Nachman B., Urbanek M., de Jong W.A., Bauer C.W. Unfolding quantum computer readout noise. NPJ Quantum Inf. 2020;6:Art. doi: 10.1038/s41534-020-00309-7. DOI

Maciejewski F.B., Zimborás Z., Oszmaniec M. Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography. Quantum. 2020;4:257. doi: 10.22331/q-2020-04-24-257. DOI

Cai Z. Quantum Error Mitigation using Symmetry Expansion. Quantum. 2021;5:548. doi: 10.22331/q-2021-09-21-548. DOI

Suchsland P., Tacchino F., Fischer M.H., Neupert T., Barkoutsos P.K., Tavernelli I. Algorithmic Error Mitigation Scheme for Current Quantum Processors. Quantum. 2021;5:492. doi: 10.22331/q-2021-07-01-492. DOI

McArdle S., Endo S., Aspuru-Guzik A., Benjamin S., Yuan X. Quantum computational chemistry. Rev. Mod. Phys. 2020;92:15003. doi: 10.1103/RevModPhys.92.015003. DOI

Bravyi S., Gambetta J.M., Mezzacapo A., Temme K. Tapering off qubits to simulate fermionic Hamiltonians. arXiv. 20171701.08213

Bravyi S., Kitaev A. Fermionic quantum computation. Ann. Phys. 2002;298:210–226. doi: 10.1006/aphy.2002.6254. DOI

Jordan P., Wigner E. Über das Paulische Äquivalenzverbot. Z. Phys. 1928;47:631–651. doi: 10.1007/BF01331938. DOI

Qiskit: An Open-Source Framework for Quantum Computing. [(accessed on 4 January 2021)]. Available online: https://qiskit.org/

Miháliková I. Implementation of the Variational Quantum Eigensolver. 2021. [(accessed on 11 November 2021)]. Available online: https://github.com/imihalik/VQE_H2.

VQE Tutorial. [(accessed on 1 November 2021)]. Available online: https://pennylane.ai/qml/demos/tutorial_vqe.html.

Qiskit’s Chemistry Module. [(accessed on 4 January 2021)]. Available online: https://qiskit.org/documentation/apidoc/qiskit_chemistry.html.

Spall J.C. Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation. IEEE Trans. Autom. Control. 1992;37:332–341. doi: 10.1109/9.119632. DOI

Spall J. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 1998;34:817–823. doi: 10.1109/7.705889. DOI

Spall J.C. An Overview of the Simultaneous Perturbation Method for Efficient Optimization. Johns Hopkins Apl Tech. Dig. 1998;19:482–492.

Havlíček V., Córcoles A., Temme K., Harrow A., Kandala A., Chow J., Gambetta J. Supervised learning with quantum-enhanced feature spaces. Nature. 2019;567:209–212. doi: 10.1038/s41586-019-0980-2. PubMed DOI

IBM Quantum. [(accessed on 4 November 2021)]. Available online: https://quantum-computing.ibm.com/

Least Square Fitting Error Mitigation. [(accessed on 2 November 2021)]. Available online: https://qiskit.org/textbook/ch-quantum-hardware/measurement-error-mitigation.html.

Amazon Braket Pricing. [(accessed on 1 November 2021)]. Available online: https://aws.amazon.com/braket/pricing/

Tukey J.W. Exploratory Data Analysis. Addison-Wesley; Boston, MA, USA: 1977.

Letham B., Karrer B., Ottoni G., Bakshy E. Constrained Bayesian Optimization with Noisy Experiments. arXiv. 2017 doi: 10.1214/18-BA1110.1706.07094 DOI

Frazier P. A Tutorial on Bayesian Optimization. arXiv. 20181807.02811

Powell M.J.D. The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo G., Roma M., editors. Large-Scale Nonlinear Optimization. Springer; Boston, MA, USA: 2006. pp. 255–297. DOI

Powell M.J.D. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation. In: Gomez S., Hennart J.P., editors. Advances in Optimization and Numerical Analysis. Springer; Dordrecht, The Netherlands: 1994. pp. 51–67. DOI

Derby C., Klassen J., Bausch J., Cubitt T. Compact fermion to qubit mappings. Phys. Rev. B. 2021;104:035118. doi: 10.1103/PhysRevB.104.035118. DOI

Lee J., Berry D.W., Gidney C., Huggins W.J., McClean J.R., Wiebe N., Babbush R. Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction. PRX Quantum. 2021;2:030305. doi: 10.1103/PRXQuantum.2.030305. DOI

Cerezo M., Sone A., Volkoff T., Cincio L., Coles P.J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 2021;12:1791. doi: 10.1038/s41467-021-21728-w. PubMed DOI PMC

Funcke L., Hartung T., Jansen K., Kühn S., Stornati P. Dimensional Expressivity Analysis of Parametric Quantum Circuits. Quantum. 2021;5:422. doi: 10.22331/q-2021-03-29-422. DOI

Nakaji K., Yamamoto N. Expressibility of the alternating layered ansatz for quantum computation. Quantum. 2021;5:434. doi: 10.22331/q-2021-04-19-434. DOI

Jaccard P. The distribution of the flora IN the alpine ZONE.1. New Phytol. 1912;11:37–50. doi: 10.1111/j.1469-8137.1912.tb05611.x. DOI

Tanimoto T.T. An Elementary Mathematical theory of Classification and Prediction. International Business Machines Corporation; New York, NY, USA: 1958. p. 8. Internal IBM Technical Report.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Meta-optimization of resources on quantum computers

. 2024 May 05 ; 14 (1) : 10312. [epub] 20240505

Best-Practice Aspects of Quantum-Computer Calculations: A Case Study of the Hydrogen Molecule

. 2022 Jan 18 ; 27 (3) : . [epub] 20220118

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...