• This record comes from PubMed

Fused Deposition Modeling as a Possible Approach for the Preparation of Orodispersible Tablets

. 2022 Jan 05 ; 15 (1) : . [epub] 20220105

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
2018/31/B/ST8/01327 National Science Center
SVV 260 547 Funding Agency of Charles University

Additive manufacturing technologies are considered as a potential way to support individualized pharmacotherapy due to the possibility of the production of small batches of customized tablets characterized by complex structures. We designed five different shapes and analyzed the effect of the surface/mass ratio, the influence of excipients, and storage conditions on the disintegration time of tablets printed using the fused deposition modeling method. As model pharmaceutical active ingredients (APIs), we used paracetamol and domperidone, characterized by different thermal properties, classified into the various Biopharmaceutical Classification System groups. We found that the high surface/mass ratio of the designed tablet shapes together with the addition of mannitol and controlled humidity storage conditions turned out to be crucial for fast tablet's disintegration. As a result, mean disintegration time was reduced from 5 min 46 s to 2 min 22 s, and from 11 min 43 s to 2 min 25 s for paracetamol- and domperidone-loaded tablets, respectively, fulfilling the European Pharmacopeia requirement for orodispersible tablets (ODTs). The tablet's immediate release characteristics were confirmed during the dissolution study: over 80% of APIs were released from printlets within 15 min. Thus, this study proved the possibility of using fused deposition modeling for the preparation of ODTs.

See more in PubMed

Baijens L.W., Clavé P., Cras P., Ekberg O., Forster A., Kolb G., Leners J.C., Masiero S., Mateos del Nozal J., Ortega O., et al. European Society for Swallowing Disorders—European Union Geriatric Medicine Society White Paper: Oropharyngeal Dysphagia as a Geriatric Syndrome. Clin. Interv. Aging. 2016;11:1403–1428. doi: 10.2147/CIA.S107750. PubMed DOI PMC

Preis M. Orally Disintegrating Films and Mini-Tablets—Innovative Dosage Forms of Choice for Pediatric Use. AAPS PharmSciTech. 2015;16:234–241. doi: 10.1208/s12249-015-0313-1. PubMed DOI PMC

Slavkova M., Breitkreutz J. Orodispersible Drug Formulations for Children and Elderly. Eur. J. Pharm. Sci. 2015;75:2–9. doi: 10.1016/j.ejps.2015.02.015. PubMed DOI

Chinwala M. Recent Formulation Advances and Therapeutic Usefulness of Orally Disintegrating Tablets (ODTs) Pharmacy. 2020;8:186. doi: 10.3390/pharmacy8040186. PubMed DOI PMC

Navarro V. Improving Medication Compliance in Patients with Depression: Use of Orodispersible Tablets. Adv. Ther. 2010;27:785–795. doi: 10.1007/s12325-010-0073-y. PubMed DOI

Council of Europe . European Pharmacopoeia. 10th ed. Council of Europe; Strasbourg, France: 2020. EDQM—European Directorate for the Quality of Medicines.

United States Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research (CDER) Guidance for Industry: Orally Disintegrating Tablets. 12/2008, USA. [(accessed on 18 November 2021)]; Available online: https://www.Fda.Gov/Media/70877/Download.

Manyikana M., Choonara Y.E., Tomar L.K., Tyagi C., Kumar P., du Toit L.C., Pillay V. A Review of Formulation Techniques That Impact the Disintegration and Mechanical Properties of Oradispersible Drug Delivery Technologies. Pharm. Dev. Technol. 2016;21:354–366. doi: 10.3109/10837450.2014.996897. PubMed DOI

Badgujar B., Mundada A. The Technologies Used for Developing Orally Disintegrating Tablets: A Review. Acta Pharm. 2011;61:117–139. doi: 10.2478/v10007-011-0020-8. PubMed DOI

Spritam. [(accessed on 18 November 2021)]. Available online: https://www.Spritam.Com/#/Patient.

Zema L., Melocchi A., Maroni A., Gazzaniga A. Three-Dimensional Printing of Medicinal Products and the Challenge of Personalized Therapy. J. Pharm. Sci. 2017;106:1697–1705. doi: 10.1016/j.xphs.2017.03.021. PubMed DOI

Govender R., Abrahmsén-Alami S., Larsson A., Folestad S. Therapy for the Individual: Towards Patient Integration into the Manufacturing and Provision of Pharmaceuticals. Eur. J. Pharm. Biopharm. 2020;149:58–76. doi: 10.1016/j.ejpb.2020.01.001. PubMed DOI

Jamróz W., Szafraniec J., Kurek M., Jachowicz R. 3D Printing in Pharmaceutical and Medical Applications—Recent Achievements and Challenges. Pharm. Res. 2018;35:176. doi: 10.1007/s11095-018-2454-x. PubMed DOI PMC

Rautamo M., Kvarnström K., Sivén M., Airaksinen M., Lahdenne P., Sandler N. Benefits and Prerequisites Associated with the Adoption of Oral 3D-Printed Medicines for Pediatric Patients: A Focus Group Study among Healthcare Professionals. Pharmaceutics. 2020;12:229. doi: 10.3390/pharmaceutics12030229. PubMed DOI PMC

Brambilla C.R.M., Okafor-Muo O.L., Hassanin H., ElShaer A. 3DP Printing of Oral Solid Formulations: A Systematic Review. Pharmaceutics. 2021;13:358. doi: 10.3390/pharmaceutics13030358. PubMed DOI PMC

Jamróz W., Kurek M., Czech A., Szafraniec J., Gawlak K., Jachowicz R. 3D Printing of Tablets Containing Amorphous Aripiprazole by Filaments Co-Extrusion. Eur. J. Pharm. Biopharm. 2018;131:44–47. doi: 10.1016/j.ejpb.2018.07.017. PubMed DOI

Bhatt U., Malakar T.K., Murty U.S., Banerjee S. 3D Printing of Immediate-Release Tablets Containing Olanzapine by Filaments Extrusion. Drug Dev. Ind. Pharm. 2021:1–10. doi: 10.1080/03639045.2021.1879833. PubMed DOI

Jamróz W., Pyteraf J., Kurek M., Knapik-Kowalczuk J., Szafraniec-Szczęsny J., Jurkiewicz K., Leszczyński B., Wróbel A., Paluch M., Jachowicz R. Multivariate Design of 3D Printed Immediate-Release Tablets with Liquid Crystal-Forming Drug—Itraconazole. Materials. 2020;13:4961. doi: 10.3390/ma13214961. PubMed DOI PMC

Jamróz W., Kurek M., Szafraniec-Szczęsny J., Czech A., Gawlak K., Knapik-Kowalczuk J., Leszczyński B., Wróbel A., Paluch M., Jachowicz R. Speed It up, Slow It Down…An Issue of Bicalutamide Release from 3D Printed Tablets. Eur. J. Pharm. Sci. 2020;143:105169. doi: 10.1016/j.ejps.2019.105169. PubMed DOI

Fanous M., Gold S., Hirsch S., Ogorka J., Imanidis G. Development of Immediate Release (IR) 3D-Printed Oral Dosage Forms with Focus on Industrial Relevance. Eur. J. Pharm. Sci. 2020;155:105558. doi: 10.1016/j.ejps.2020.105558. PubMed DOI

Kollamaram G., Croker D.M., Walker G.M., Goyanes A., Basit A.W., Gaisford S. Low Temperature Fused Deposition Modeling (FDM) 3D Printing of Thermolabile Drugs. Int. J. Pharm. 2018;545:144–152. doi: 10.1016/j.ijpharm.2018.04.055. PubMed DOI

Pyteraf J., Jamróz W., Kurek M., Szafraniec-Szczęsny J., Kramarczyk D., Jurkiewicz K., Knapik-Kowalczuk J., Tarasiuk J., Wroński S., Paluch M., et al. How to Obtain the Maximum Properties Flexibility of 3D Printed Ketoprofen Tablets Using Only One Drug-Loaded Filament? Molecules. 2021;26:3106. doi: 10.3390/molecules26113106. PubMed DOI PMC

Hussain A., Mahmood F., Arshad M.S., Abbas N., Qamar N., Mudassir J., Farhaj S., Nirwan J.S., Ghori M.U. Personalised 3D Printed Fast-Dissolving Tablets for Managing Hypertensive Crisis: In-Vitro/In-Vivo Studies. Polymers. 2020;12:3057. doi: 10.3390/polym12123057. PubMed DOI PMC

Than Y.M., Titapiwatanakun V. Statistical Design of Experiment-Based Formulation Development and Optimization of 3D Printed Oral Controlled Release Drug Delivery with Multi Target Product Profile. J. Pharm. Investig. 2021;51:715–734. doi: 10.1007/s40005-021-00542-y. DOI

Than Y.M., Titapiwatanakun V. Tailoring Immediate Release FDM 3D Printed Tablets Using a Quality by Design (QbD) Approach. Int. J. Pharm. 2021;599:120402. doi: 10.1016/j.ijpharm.2021.120402. PubMed DOI

Goyanes A., Buanz A.B.M., Hatton G.B., Gaisford S., Basit A.W. 3D Printing of Modified-Release Aminosalicylate (4-ASA and 5-ASA) Tablets. Eur. J. Pharm. Biopharm. 2015;89:157–162. doi: 10.1016/j.ejpb.2014.12.003. PubMed DOI

Thakkar R., Pillai A.R., Zhang J., Zhang Y., Kulkarni V., Maniruzzaman M. Novel On-Demand 3-Dimensional (3-D) Printed Tablets Using Fill Density as an Effective Release-Controlling Tool. Polymers. 2020;12:1872. doi: 10.3390/polym12091872. PubMed DOI PMC

Sadia M., Arafat B., Ahmed W., Forbes R.T., Alhnan M.A. Channelled Tablets: An Innovative Approach to Accelerating Drug Release from 3D Printed Tablets. J. Control. Release. 2018;269:355–363. doi: 10.1016/j.jconrel.2017.11.022. PubMed DOI

Arafat B., Wojsz M., Isreb A., Forbes R.T., Isreb M., Ahmed W., Arafat T., Alhnan M.A. Tablet Fragmentation without a Disintegrant: A Novel Design Approach for Accelerating Disintegration and Drug Release from 3D Printed Cellulosic Tablets. Eur. J. Pharm. Sci. 2018;118:191–199. doi: 10.1016/j.ejps.2018.03.019. PubMed DOI

World Health Organization . Pocket Book of Hospital Care for Children. 2nd ed. World Health Organization; Geneva, Switzerland: 2013. Guidelines for the Management of Common Childhood Illnesses. PubMed

European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP) Paracetamol Oral Use Immediate Release Formulations Product-Specific Bioequivalence Guidance. [(accessed on 23 November 2021)]. Available online: https://www.Ema.Europa.Eu/

Granberg R.A., Rasmuson Å.C. Solubility of Paracetamol in Pure Solvents. J. Chem. Eng. Data. 1999;44:1391–1395. doi: 10.1021/je990124v. DOI

Ghodke D.S., Chaulang G.M., Patil K.S., Nakhat P.D., Yeole P.G., Naikwade N.S., Magdum C.S. Solid State Characterization of Domperidone: Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Indian J. Pharm. Sci. 2010;72:245–249. doi: 10.4103/0250-474X.65032. PubMed DOI PMC

Patel D., Patel S., Patel C. Formulation and Evaluation of Fast Dissolving Tablet Containing Domperidone Ternary Solid Dispersion. Int. J. Pharm. Investig. 2014;4:174. doi: 10.4103/2230-973X.143116. PubMed DOI PMC

Technical Information: Parteck® MXP. [(accessed on 19 November 2021)]. Available online: https://www.Merckmillipore.Com/Web-PL-Site/Pl_PL/-/PLN/ShowDocument-Pronet?Id=201611.231.

Wei C., Solanki N.G., Vasoya J.M., Shah A.V., Serajuddin A.T.M. Development of 3D Printed Tablets by Fused Deposition Modeling Using Polyvinyl Alcohol as Polymeric Matrix for Rapid Drug Release. J. Pharm. Sci. 2020;109:1558–1572. doi: 10.1016/j.xphs.2020.01.015. PubMed DOI

Goyanes A., Robles Martinez P., Buanz A., Basit A.W., Gaisford S. Effect of Geometry on Drug Release from 3D Printed Tablets. Int. J. Pharm. 2015;494:657–663. doi: 10.1016/j.ijpharm.2015.04.069. PubMed DOI

Gorkem Buyukgoz G., Soffer D., Defendre J., Pizzano G.M., Davé R.N. Exploring Tablet Design Options for Tailoring Drug Release and Dose via Fused Deposition Modeling (FDM) 3D Printing. Int. J. Pharm. 2020;591:119987. doi: 10.1016/j.ijpharm.2020.119987. PubMed DOI

Nickerson B., Kong A., Gerst P., Kao S. Correlation of Dissolution and Disintegration Results for an Immediate-Release Tablet. J. Pharm. Biomed. Anal. 2018;150:333–340. doi: 10.1016/j.jpba.2017.12.017. PubMed DOI

Samaro A., Janssens P., Vanhoorne V., Van Renterghem J., Eeckhout M., Cardon L., De Beer T., Vervaet C. Screening of Pharmaceutical Polymers for Extrusion-Based Additive Manufacturing of Patient-Tailored Tablets. Int. J. Pharm. 2020;586:119591. doi: 10.1016/j.ijpharm.2020.119591. PubMed DOI

Beck R.C.R., Chaves P.S., Goyanes A., Vukosavljevic B., Buanz A., Windbergs M., Basit A.W., Gaisford S. 3D Printed Tablets Loaded with Polymeric Nanocapsules: An Innovative Approach to Produce Customized Drug Delivery Systems. Int. J. Pharm. 2017;528:268–279. doi: 10.1016/j.ijpharm.2017.05.074. PubMed DOI

Đuranović M., Madžarević M., Ivković B., Ibrić S., Cvijić S. The Evaluation of the Effect of Different Superdisintegrants on the Drug Release from FDM 3D Printed Tablets through Different Applied Strategies: In Vitro-In Silico Assessment. Int. J. Pharm. 2021;610:121194. doi: 10.1016/j.ijpharm.2021.121194. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...