Hot Deformation Behavior of Non-Alloyed Carbon Steels

. 2022 Jan 13 ; 15 (2) : . [epub] 20220113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35057311

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008399 EU and CR financial funds provided by the Operational Programme Research, Development and Education, Call 02_17_049 Long-Term Intersectoral Cooperation for ITI, Managing Authority: Czech Republic - Ministry of Education, Youth and Sports
SP2021/41 VŠB - TU Ostrava by the Ministry of Education, Youth and Sports of the Czech Republic
SP2021/73 VŠB - TU Ostrava by the Ministry of Education, Youth and Sports of the Czech Republic

The hot deformation behavior of selected non-alloyed carbon steels was investigated by isothermal continuous uniaxial compression tests. Based on the analysis of experimentally determined flow stress curves, material constants suitable for predicting peak flow stress σp, peak strain εp and critical strain εcrDRX necessary to induce dynamic recrystallization and the corresponding critical flow stresses σcrDRX were determined. The validity of the predicted critical strains εcrDRX was then experimentally verified. Fine dynamically recrystallized grains, which formed at the boundaries of the original austenitic grains, were detected in the microstructure of additionally deformed specimens from low-carbon investigated steels. Furthermore, equations describing with perfect accuracy a simple linear dependence of the critical strain εcrDRX on peak strain εp were derived for all investigated steels. The determined hot deformation activation energy Q decreased with increasing carbon content (also with increasing carbon equivalent value) in all investigated steels. A logarithmic equation described this dependency with reasonable accuracy. Individual flow stress curves of the investigated steels were mathematically described using the Cingara and McQueen model, while the predicted flow stresses showed excellent accuracy, especially in the strains ranging from 0 to εp.

Zobrazit více v PubMed

Zhang H.K., Xiao H., Fang X.W., Zhang Q., Logé R.E., Huang K. A critical assessment of experimental investigation of dynamic recrystallization of metallic materials. Mater. Design. 2020;193:108873. doi: 10.1016/j.matdes.2020.108873. DOI

Wang M., Wang W., Liu Z., Sun C., Qian L. Hot workability integrating processing and activation energy maps of Inconel 740 superalloy. Mater. Today. Commun. 2018;14:188–198. doi: 10.1016/j.mtcomm.2018.01.009. DOI

Qiang F., Bouzy E., Kou H., Zhang Y., Wang L., Li J. Grain fragmentation associated continuous dynamic recrystallization (CDRX) of hexagonal structure during uniaxial isothermal compression: High-temperature α phase in TiAl alloys. Intermetallics. 2021;129:107028. doi: 10.1016/j.intermet.2020.107028. DOI

Kawulok P., Schindler I., Kawulok R., Opěla P., Sedláček R. Influence of heating parameters on flow stress curves of low-alloy Mn-Ti-B steel. Arch. Metall. Mater. 2018;63:1785–1792. doi: 10.24425/amm.2018.125105. DOI

Zheng S.J., Yuan X.H., Gong X., Le T., Ravindra A.V. Hot deformation behavior and microstructural evolution of an Fe-Cr-W-Mo-V-C steel. Metall. Mater. Trans. A. 2019;50:2342–2355. doi: 10.1007/s11661-019-05162-8. DOI

Wang M.T., Zang X.L., Li X.T., Du F.S. Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution. J. Iron Steel Res. Int. 2007;14:30–36. doi: 10.1016/S1006-706X(07)60039-9. DOI

Siciliano F., Jonas J.J. Mathematical Modeling of the Hot Strip Rolling of Microalloyed Nb, Multiply-Alloyed Cr-Mo, and Plain C-Mn Steels. Metall. Mater. Trans. A. 2012;31:511–530. doi: 10.1007/s11661-000-0287-8. DOI

Gu S.D., Zhang L.W., Yue C.X., Ruan J.H., Zhang J.L., Gao H.J. Multi-field coupled numerical simulation of microstructure evolution during the hot rolling process of GCr15 steel rod. Comp. Mater. Sci. 2011;50:1951–1957. doi: 10.1016/j.commatsci.2011.01.034. DOI

Siciliano F., Rodrigues S.F., Aranas C., Jonas J.J. The dynamic transformation of ferrite above Ae3 and the consequences on hot rolling of steels. Tecnol. Metal. Mater. Miner. 2020;17:90–95. doi: 10.4322/2176-1523.20202230. DOI

Fu Y., Yu H. Application of mathematical modeling in two-stage rolling of hot rolled wire rods. J. Mater. Process. Tech. 2014;214:1962–1970. doi: 10.1016/j.jmatprotec.2014.04.017. DOI

Gu B., Chekhonin P., Schaarschuch R., Oertel C.G., Xin S.W., Ma C.L., Zhou L., Gan W.M., Skrotzki W. Microstructure, texture and hardness of a metastable β-titanium alloy after bar-rolling and annealing. J. Alloy. Compd. 2020;825:154082. doi: 10.1016/j.jallcom.2020.154082. DOI

Ebrahimi R., Solhjoo S. Characteristic Points of Stress-Strain Curve at High Temperature. Int. J. ISSI. 2007;4:24–27.

Opěla P., Schindler I., Rusz S., Vančura F. Determination of the critical strain for the onset of dynamic recrystallization of C45 carbon steel using flow stress models; Proceedings of the 26th International Conference on Metallurgy and Materials Metal 2017; Brno, Czech Republic. 24–26 May 2017; pp. 496–501.

Solhjoo S. Determination of critical strain for initiation of dynamic recrystallization. Mater. Design. 2010;31:1360–1364. doi: 10.1016/j.matdes.2009.09.001. DOI

Liu Y.H., Liu Z.Z., Wang M. Gradient microstructure evolution under thermo-mechanical coupling effects for a nickel-based powder metallurgy superalloy—Dynamic recrystallization coexist with static recrystallization. J. Mater. Process. Tech. 2021;294:117142. doi: 10.1016/j.jmatprotec.2021.117142. DOI

Zhu L.M., Li Q.A., Chen X.Y., Zhang Q. Effect of Sm on dynamic recrystallization of Mg-8Gd-0.5Zr alloy during hot compression. J. Alloy. Compd. 2021;865:158648. doi: 10.1016/j.jallcom.2021.158648. DOI

Fernández A.I., Uranga P., López B., Ródrigez-Ibabe J.M. Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels. Mater. Sci. Eng. A. 2003;361:367–376. doi: 10.1016/S0921-5093(03)00562-8. DOI

Liu X.G., Zhang L.G., Qi R.S., Chen L., Jin M., Guo B.F. Prediction of critical conditions for dynamic recrystallization in 316LN austenitic steel. J. Iron Steel Res. Int. 2016;23:238–243. doi: 10.1016/S1006-706X(16)30040-1. DOI

Ohadi D., Parsa M.H., Mirzadeh H. Development of dynamic recrystallization maps based on the initial grain size. Mater. Sci. Eng. A. 2013;565:90–95. doi: 10.1016/j.msea.2012.12.030. DOI

Wang Z.H., Sun S.H., Wang B., Shi Z.P., Zhang R.H., Fu W.T. Effect of grain size on dynamic recrystallization and hot-ductility behaviors in high-nitrogen CrMn austenitic stainless steel. Metall. Mater. Trans. A. 2014;45:3631–3639. doi: 10.1007/s11661-014-2290-5. DOI

El Wahabi M., Gavard L., Montheillet F., Cabrera J.M., Prado J.M. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels. Acta Mater. 2005;53:4605–4612. doi: 10.1016/j.actamat.2005.06.020. DOI

Chamanfar A., Alamoudi M.T., Nanninga N.E., Misiolek W.Z. Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099) Mater. Sci. Eng. A. 2019;743:684–696. doi: 10.1016/j.msea.2018.11.076. DOI

Guo L.G., Wang F.Q., Zhen P.L., Li X.C., Zhan M. A novel unified model predicting flow stress and grain size evolutions during hot working of non-uniform as-cast 42CrMo billets. Chin. J. Aeronaut. 2019;32:531–545. doi: 10.1016/j.cja.2018.04.009. DOI

Schindler I., Kawulok P., Kawulok R., Hadasik E., Kuc D. Influence of calculation method on value of activation energy in hot forming. High Temp. Mater. Processes. 2013;32:149–155. doi: 10.1515/htmp-2012-0106. DOI

Schindler I., Sauer M., Kawulok P., Rodak K., Hadasik E., Jablońska M.B., Rusz S., Ševčák V. Study of hot deformation behavior of CuFe2 alloy. Arch. Metall. Mater. 2019;64:701–706. doi: 10.24425/amm.2019.127601. DOI

Schindler I., Kawulok P., Očenášek V., Opěla P., Kawulok R., Rusz S. Flow stress and hot deformation activation energy of 6082 aluminium alloy influenced by initial structural state. Metals. 2019;9:1248. doi: 10.3390/met9121248. DOI

Cingara A., McQueen H.J. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels. J. Mater. Process. Tech. 1992;36:31–42. doi: 10.1016/0924-0136(92)90236-L. DOI

Ghazani M.S., Eghbali B. Modeling the flow behavior of AISI 321 austenitic stainless steel using a simple combined phenomenological method. Mech. Mater. 2019;137:103108. doi: 10.1016/j.mechmat.2019.103108. DOI

Abarghooee H., Arabi H., Seyedein S.H., Mirzakhani B. Modelling of hot flow behavior of API-X70 microalloyed steel by genetic algorithm and comparison with experiments. Int. J. Pres. Ves. Pip. 2021;189:104261. doi: 10.1016/j.ijpvp.2020.104261. DOI

Shafaat M.A., Omidvar H., Fallah B. Prediction of hot compression flow curves of Ti–6Al–4V alloy in α + β phase region. Mater. Design. 2011;32:4689–4695. doi: 10.1016/j.matdes.2011.06.048. DOI

Najafizadeh A., Jonas J.J. Predicting the critical stress for initiation of dynamic recrystallization. ISIJ Int. 2006;46:1679–1684. doi: 10.2355/isijinternational.46.1679. DOI

Johnson G.R., Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985;21:31–48. doi: 10.1016/0013-7944(85)90052-9. DOI

Quan G.Z., Tong Y., Luo G., Zhou J. A characterization for the flow behavior of 42CrMo steel. Comp. Mater. Sci. 2010;50:167–171. doi: 10.1016/j.commatsci.2010.07.021. DOI

Xiao Y.H., Guo C. Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel. Mater. Sci. Eng. A. 2011;528:5081–5087. doi: 10.1016/j.msea.2011.03.050. DOI

Hensel A., Spittel T. Kraft- und Arbeitsbedarf Bildsamer Formgebungsverfahren. 1st ed. Deutscher Verlag für Grundstoffindustrie; Leipzig, Germany: 1978.

Yu J.M., Zhang Z.M., Xu P., Dong B.B., Wang Q., Meng M., Hao H.Y., Li X.B., Yin X.Y. Dynamic recrystallization behavior of Gd-containing Mg alloy under torsion deformation. J. Alloy. Compd. 2019;787:239–253. doi: 10.1016/j.jallcom.2019.01.330. DOI

Lino R., Guadanini L.G.L., Silva L.B., Neto J.G.C., Barbosa R. Effect of Nb and Ti addition on activation energy for austenite hot deformation. J. Mater. Res. Technol. 2019;8:180–188. doi: 10.1016/j.jmrt.2017.11.002. DOI

Marques A., Souza R.A., Pinto G.A.M., Galdino A.G.S., Machado M.L.P. Evaluation of the softening mechanisms of AISI 4340 structural steel using hot torsion test. J. Mater. Res. Technol. 2020;9:10886–10900. doi: 10.1016/j.jmrt.2020.07.091. DOI

Mandziej S.T. Physical simulation of metallurgical processes. Mater. Tech. 2010;44:105–119.

Zhao H.T., Qi J.J., Liu G.Q., Su R., Sun Z.H. A comparative study on hot deformation behaviours of low-carbon and medium-carbon vanadium microalloyed steels. J. Mater. Res. Technol. 2020;9:11319–11331. doi: 10.1016/j.jmrt.2020.08.016. DOI

Murata M., Yoshida Y., Nishiwaki T. Stress correction method for flow stress identification by tensile test using notched round bar. J. Mater. Process. Tech. 2018;251:65–72. doi: 10.1016/j.jmatprotec.2017.08.008. DOI

Wen D.X., Gao C.X., Zheng Z.Z., Wang K., Xiong Y.B., Wang J.K., Li J.J. Hot tensile behavior of a low-alloyed ultrahigh strength steel: Fracture mechanism and physically-based constitutive model. J. Mater. Res. Technol. 2021;13:1684–1697. doi: 10.1016/j.jmrt.2021.05.100. DOI

Li Z., Zhao J.W., Jia F.H., Lu Y., Zhang Q.F., Jiao S.H., Jiang Z.Y. Analysis of flow behaviour and strain partitioning mechanism of bimetal composite under hot tensile conditions. Int. J. Mech. Sci. 2019;169:105317. doi: 10.1016/j.ijmecsci.2019.105317. DOI

Žídek M. Metalurgická tvařitelnost ocelí za tepla a za studena [Metallurgical Formability of Steels at Hot and Cold Conditions] 1st ed. Aleko; Praha, Czech Republic: 1995. (In Czech)

Rusz S., Němec J., Schindler I., Opěla P., Solowski Z. Influence of initial structure on stress-strain curves of medium-carbon steel; Proceedings of the 26th International Conference on Metallurgy and Materials Metal 2017; Brno, Czech Republic. 24–26 May 2017; pp. 533–538.

Thomas B.G., Samarasekera I.V., Brimacombe J.K. Mathematical model of the thermal processing of steel ingots 1. heat flow model. Met. Tran B. 1987;18:119–130. doi: 10.1007/BF02658437. DOI

Kasatkin O.G., Vinokur B.B., Pilyushenko V.L. Calculation models for determining the critical points of steel. Met. Sci. Heat Treat. 1984;26:27–31. doi: 10.1007/BF00712859. DOI

GLEEBLE: Gleeble®Thermal-Mechanical Simulators. [(accessed on 8 November 2021)]. Available online: https://gleeble.com/

Zener C., Hollomon J.H. Effect of Strain Rate Upon Plastic Flow of Steel. J. Appl. Phys. 1944;15:22–32. doi: 10.1063/1.1707363. DOI

Garofalo F. An empirical relation defining the stress dependence of minimum creep rate in metals. Trans. Metall. Soc. AIME. 1963;227:351–356.

McQueen H.J., Yue S., Ryan N.D., Fry E. Hot working characteristics of steels in austenitic state. J. Mater. Process. Tech. 1995;53:293–310. doi: 10.1016/0924-0136(95)01987-P. DOI

Legerski M., Plura J., Schindler I., Rusz S., Kawulok P., Kulveitová H., Hadasik E., Kuc D., Niewielski G. Complex flow stress model for a magnesium alloy AZ31 at hot forming. High Temp. Mater. Processes. 2011;30:63–69. doi: 10.1515/htmp.2011.008. DOI

Malas J.C., Venugopal S., Seshacharyulu T. Effect of microstructural complexity on the hot deformation behavior of aluminum alloy 2024. Mater. Sci. Eng. A. 2004;368:41–47. doi: 10.1016/j.msea.2003.09.078. DOI

Huang X.D., Zhang H., Han Y., Wu W.X., Chen J.H. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature. Mater. Sci. Eng. A. 2010;527:485–490. doi: 10.1016/j.msea.2009.09.042. DOI

Quan G.Z., Mao Y.P., Li G.S., Lv W.Q., Wang Y., Zhou J. A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress-strain curves. Comp. Mater. Sci. 2012;55:65–72. doi: 10.1016/j.commatsci.2011.11.031. DOI

Bembalge O.B., Panigrahi S.K. Hot deformation behavior and processing map development of cryorolled AA6063 alloy under compression and tension. Int. J. Mech. Sci. 2021;191:106100. doi: 10.1016/j.ijmecsci.2020.106100. DOI

Opěla P., Kawulok P., Schindler I., Kawulok R., Rusz S., Navrátil H. On the Zener-Hollomon Parameter, Multi-Layer Perceptron and Multivariate Polynomials in the Struggle for the Peak and Steady-State Description. Metals. 2020;10:1413. doi: 10.3390/met10111413. DOI

Yang. P.R., Liu C.X., Guo Q.Y., Liu Y.C. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy. J. Mater. Sci. Technol. 2021;72:162–171. doi: 10.1016/j.jmst.2020.09.024. DOI

Ryan N.D., McQueen H.J. Flow stress, dynamic restoration, strain hardening and ductility in hot workability of 316 steel. J. Mater. Process. Tech. 1990;21:177–199. doi: 10.1016/0924-0136(90)90005-F. DOI

Poliak E.I., Jonas J.J. Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ Int. 2003;43:684–691. doi: 10.2355/isijinternational.43.684. DOI

Schindler I., Opěla P., Kawulok P., Sauer M., Rusz S., Kuc D., Rodak K. Hot deformation activation energy of metallic materials influenced by strain value. Arch. Metall. Mater. 2021;66:223–228. doi: 10.24425/amm.2021.134779. DOI

Medina S.F., Hernandez C.A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater. 1996;44:137–148. doi: 10.1016/1359-6454(95)00151-0. DOI

Sakai T., Ohashmi M. The effect of temperature, strain rate and carbon content on hot deformation of carbon steels. Tetsu--Hagané. 1981;67:2000–2009. doi: 10.2355/tetsutohagane1955.67.11_2000. DOI

Elfmark J. Parametrické vyjádření kinetiky dynamické rekrystalizace při deformaci za tepla [Parametric expression of the kinetics of dynamic recrystallization during hot deformation] Hut. Listy. 1982;37:564–568. (In Czech)

Serajzadeh S., Taheri A.K. An investigation on the effect of carbon and silicon on flow behavior of steel. Mater. Design. 2002;23:271–276. doi: 10.1016/S0261-3069(01)00080-2. DOI

Saadatkia S., Mirzadeh H., Cabrera J.M. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Mater. Sci. Eng. A. 2015;636:196–202. doi: 10.1016/j.msea.2015.03.104. DOI

Mead H.W., Birchenall C.E. Self-diffusion of iron in austenite. JOM. 1956;8:1336–1339. doi: 10.1007/BF03377878. DOI

Colas R. A model for the hot deformation of low-carbon steel. J. Mater. Process. Tech. 1996;62:180–184. doi: 10.1016/0924-0136(95)02227-9. DOI

Gauss J.C.F. Theoria Combinationis Observationum Erroribus Minimis Obnoxiae [Theory of the Combination of Observations Least Subject to Errors] Henricum Dieterich; Göttingen, Germany: 1823.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hot Deformation and Microstructure Evolution of Metallic Materials

. 2023 Feb 14 ; 16 (4) : . [epub] 20230214

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...