Thrombosis-associated hypofibrinogenemia: novel abnormal fibrinogen variant FGG c.8G>A with oxidative posttranslational modifications
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články
PubMed
35067535
DOI
10.1097/mbc.0000000000001125
PII: 00001721-202206000-00007
Knihovny.cz E-zdroje
- MeSH
- afibrinogenemie * komplikace genetika MeSH
- dospělí MeSH
- fibrin metabolismus MeSH
- fibrinogen genetika metabolismus MeSH
- fibrinogeny abnormální * genetika metabolismus MeSH
- hemostatika * MeSH
- lidé MeSH
- oxidační stres MeSH
- posttranslační úpravy proteinů MeSH
- trombóza * komplikace genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- fibrin MeSH
- fibrinogen MeSH
- fibrinogeny abnormální * MeSH
- hemostatika * MeSH
Here, we present the first case of fibrinogen variant FGG c.8G>A. We investigated the behaviour of this mutated fibrinogen in blood coagulation using fibrin polymerization, fibrinolysis, fibrinopeptides release measurement, mass spectrometry (MS), and scanning electron microscopy (SEM). The case was identified by routine coagulation testing of a 34-year-old man diagnosed with thrombosis. Initial genetic analysis revealed a heterozygous mutation in exon 1 of the FGG gene encoding gamma chain signal peptide. Fibrin polymerization by thrombin and reptilase showed the normal formation of the fibrin clot. However, maximal absorbance within polymerization was lower and fibrinolysis had a longer degradation phase than healthy control. SEM revealed a significant difference in clot structure of the patient, and interestingly, MS detected several posttranslational oxidations of fibrinogen. The data suggest that the mutation FGG c.8G>A with the combination of the effect of posttranslational modifications causes a novel case of hypofibrinogenemia associated with thrombosis.
Zobrazit více v PubMed
Mackman N. Triggers, targets and treatments for thrombosis. Nature 2008; 451:914–918.
de Vries JJ, Snoek CJM, Rijken DC, de Maat MPM. Effects of post-translational modifications of fibrinogen on clot formation,clotstructure,and fibrinolysis: a systematic review. Arterioscler Thromb Vasc Biol 2019; 40:554–569.
De Vries PS, Chasman DI, Sabater-Lleal M, Chen MH, Huffman JE, Steri M, et al. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration. Hum Mol Genet 2016; 25:358–370.
Cronjé HT, Nienaber-Rousseau C, Zandberg L, De Lange Z, Green FR, Pieters M. fibrinogen and clot-related phenotypes determined by fibrinogen polymorphisms: independent and IL-6-interactive associations. PLoS One 2017; 12:e0187712.
De Maat MPM, Verschuur M. Fibrinogen heterogeneity: inherited and noninherited. Curr Opin Hematol 2005; 12:377–383.
Henschen AH. Human fibrinogen-structural variants and functional sites. Thromb Haemost 1993; 70:42–47.
Henschen-Edman AH. On the identification of beneficial and detrimental molecular forms of fibrinogen. Haemostasis 1999; 29:179–186.
Henschen A, Mcdonagh J. Chapter 7 fibrinogen, fibrin and factor XIII. New Comprehensive Biochem 1986; 13:171–241.
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res 2002; 12:996–1006.
Fowler WE, Erickson HP. Trinodular structure of fibrinogen: confirmation by both shadowing and negative stain electron microscopy. J Mol Biol 1979; 134:241–249.
Medved L, Weisel JW. Fibrinogen; of Scientific Standardization Committee of International Society on Thrombosis; haemostasis recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost 2009; 7:355–359.
Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost 2005; 3:1894–1904.
Hanss M, Biot F. A database for human fibrinogen variants. Ann N Y Acad Sci 2001; 936:89–90.
Hill M, Dolan G. Diagnosis, clinical features and molecular assessment of the dysfibrinogenaemias. Haemophilia 2008; 14:889–897.
Asselta R, Duga S, Tenchini ML. The molecular basis of quantitative fibrinogen disorders. J Thromb Haemost 2006; 4:2115–2129.
Shacter E, Williams JA, Lim M, Levine RL. Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay. Free Rad Biol Med 1994; 17:429–437.
Moslen MT. Reactive oxygen species in normal physiology, cell injury and phagocytosis. Adv Exp Med Biol 1994; 366:17–27.
Paton LN, Mocatta TJ, Richards AM, Winterbourn CC. Increased Thrombin-Induced Polymerization of Fibrinogen Associated with High Protein Carbonyl Levels in Plasma from Patients Post Myocardial Infarction. Free Radic Biol Med 2010; 48:223–229.
Ariens RA. Fibrin(Ogen) and thrombotic disease. J Thromb Haemost 2013; 11: (Suppl 1): 294–305.
Casini A, Neerman-Arbez M, Ariens RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015; 13:909–919.
Brennan SO, Mangos H, Faed JM. Benign FGB (148Lys→Asn, and 448Arg→Lys), and novel causative →211Tyr→His mutation distinguished by time of flight mass spectrometry in a family with hypofibrinogenaemia. Thromb Haemost 2013; 111:679–684.
Brennan SO, Hammonds B, George PM. Aberrant hepatic processing causes removal of activation peptide and primary polymerisation site from fibrinogen Canterbury (A Alpha 20 Val –> Asp). J Clin Invest 1995; 96:2854–2858.
Clauss A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematologica 1957; 17:237–246.
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16:1215.
Switzar L, Giera M, Niessen WMA. Protein digestion: an overview of the available techniques and recent developments. J Proteome Res 2013; 12:1067–1077.
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2019; 47:D442–D450.
Kotlín R, Suttnar J, Ćápová I, Hrachovinová I, Urbánková M, Dyr JE. Fibrinogen Šumperk II: dysfibrinogenemia in an individual with two coding mutations. Am JHematol 2012; 87:555–557.
Kotlin R, Chytilova M, Suttnar J, Salaj P, Riedel T, SantrucekJ, et al. Anovel fibrinogen variant-Praha I: hypofibrinogenemia associated with gamma Gly351Ser substitution. Eur J Haematol 2007; 78:410–416.
Suttnar J, Dyr JE, Fořtová H, Pristach J. Determination of fibrinonopeptides by high resolution liquid chromotagraphy. Biochem Clin Bohemoslovaca 1989; 18:17–25.
Huang S, Mulvihill ER, Farrell DH, Chung DW, Davie EW. Biosynthesis of human fibrinogen. Subunit interactions and potential intermediateS IN THE ASSEMBLY. J Biol Chem 1993; 268:8919–8926.
Tamura T, Arai S, Nagaya H, Mizuguchi J, Wada I. Stepwise assembly of fibrinogen is assisted by the endoplasmic reticulum lectin-chaperone system in HepG2 cells. PloS One 2013; 8:e74580.
Maquat LE, Carmichael GG. Quality control of MRNA function. Cell 2001; 104:173–176.
Maquat LE. Nonsense-mediated MRNA decay: splicing, translation and MRNP dynamics. Nat Rev Mol Cell Biol 2004; 5:89–99.
Soya K, Takezawa Y, Okumura N, Terasawa F. Nonsense-mediated MRNA decay was demonstrated in two hypofibrinogenemias caused by heterozygous nonsense mutations of FGG, Shizuoka III and Kanazawa II. Thromb Res 2013; 132:465–470.
Zawilska K, Undas A, Fish RJ, Molendowicz-Portala L, De Moerloose P, Neerman-Arbez M. Characterisation of a novel nonsense mutation in FGG (Fibrinogen poznan) causing hypofibrinogenaemia with a mild bleeding tendency. Thromb Haemost 2010; 103:677–679.
Marchi R, Brennan S, Meyer M, Rojas H, Kanzler D, De Agrela M, et al. A novel mutation in the FGB: C.1105C> T turns the codon for amino acid B( Q339 into a stop codon causing hypofibrinogenemia. Blood Cells Mol Dis 2013; 50:177–181.
Kotlin R, Reicheltova Z, Suttnar J, Salaj P, Hrachovinova I, Riedel T, et al. Two novel fibrinogen variants in the C-terminus of the Bbeta-Chain: fibrinogen Rokycany and fibrinogen Znojmo. J Thromb Thrombolysis 2010; 30:311–318.
Wolberg AS, Campbell RA. Thrombin generation, fibrin clot formation and hemostasis. Transfus Apheresis Sci 2008; 38:15–23.
Weisel JW, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 1992; 63:111–128.
Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophys J 1999; 77:2813–2826.
Wolberg AS, Gabriel DA, Hoffman M. Analyzing fibrin clot structure using a microplate reader. Blood Coagul Fibrinolysis 2002; 13:533–539.
Carr ME Jr, Shen LL, Hermans J. Mass-length ratio of fibrin fibers from gel permeation and light scattering. Biopolymers 1977; 16:1–15.
Weisel JW, Veklich Y, Collet JP, Francis CW. Structural studies of fibrinolysis by electron and light microscopy. Thromb Haemost 1999; 82:277–282.
Kolev K, TenekedjievK, KomorowiczE, Machovich R. Functional evaluation of the structural features of proteases and their substrate in fibrin surface degradation. J boil Chem 1997; 272:13666–13675.
Collet JP, Park D, Lesty C, Soria J, Soria C, Montalescot G, Weisel JW. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 2000; 20:1354–1361.
Casini A, Vilar R, Beauverd Y, Aslan D, Devreese K, Mondelaers V, et al. Protein modelling to understand FGB mutations leading to congenital hypofibrinogenaemia. Haemophilia 2017; 23:583–589.
Zdziarska J, Undas A, Basa J, Iwaniec T, Skotnicki AB, de Moerloose P, et al. Severe bleeding and miscarriages in a hypofibrinogenemic woman heterozygous for the gamma Ala82Gly mutation. Blood Coagul Fibrinolysis 2009; 20:374–376.
Simurda T, Caccia S, Asselta R, Zolkova J, Stasko J, Skornova I, et al. Congenital hypofibrinogenemia associated with a novel heterozygous nonsense mutation in the globular C-terminal domain of the (-chain (p.Glu275Stop). J Thromb Thrombolysis 2020; 50:233–236.
Sheen CR, Low J, Joseph J, Kotlyar E, George PM, Brennan SO. Fibrinogen darlinghurst: hypofibrinogenaemia caused by a W253G mutation in the gamma chain in a patient with both bleeding and thrombotic complications. Thromb Haemost 2006; 96:685–687.
Simurda T, Zolkova J, Snahnicanova Z, Loderer D, Skornova I, Sokol J, et al. Identification of two novel fibrinogen B( chain mutations in two Slovak families with quantitative fibrinogen disorders. Int J Mol Sci 2017.
Simurda T, Brunclikova M, Asselta R, Caccia S, Zolkova J, Kolkova Z, et al. Genetic variants in the FGB and FGG genes mapping in the beta and gamma nodules of the fibrinogen molecule in congenital quantitative fibrinogen disorders associated with a thrombotic phenotype. Int J Mol Sci 2020; 21:4616.
Stadtman ER, Levine RL. Freeradical-mediatedoxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 25:207–218.
Cai Z, Yan L-J. Protein oxidative modifications: beneficial roles in disease and health. J Biochem Pharmacol Res 2013; 1:15–26.
Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 2006; 10:389–406.
Štikarová J, Kotlín R, Riedel T, Suttnar J, Pimková K, Chrastinová L, Dyr JE. The effect of reagents mimicking oxidative stress on fibrinogen function. Sci World J 2013; 2013:359621.
Bychkova AV, Vasilyeva AD, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN, et al. Oxidation-induced modification of the fibrinogen polypeptide chains. Dokl Biochem Biophys 2017; 474:173–177.
Lugovskoi E, Pydiura N, Makogonenko Y, Urvant L, Gritsenko P, Kolesnikova I, et al. The fibrin Bβ125-135 site is involved in the lateral association of protofibrils. Ukrain Biochem J 2020; 92:33–45.
Okumura N, Terasawa F, Hirota-Kawadobora M, Yamauchi K, Nakanishi K, Shiga S, et al. A novel variant fibrinogen, deletion of B(111Ser in coiled-coil region, affecting fibrin lateral aggregation. Clin Chim Acta 2006; 365:160–167.
Vadseth C, Souza JM, Thomson L, Seagraves A, Nagaswami C, Scheiner T, et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem 2004; 279:8820–8826.
Sovovaí Ž, Štikarovaí J, Kaufmanovaí J, Maíjek P, Suttnar J, Šácha P, et al. Impact of posttranslational modifications on atomistic structure of fibrinogen. PLoS One 2020; 15:e0227543.