Renin-angiotensin system inhibitors and mortality among diabetic patients with STEMI undergoing mechanical reperfusion during the COVID-19 pandemic
Status PubMed-not-MEDLINE Language English Country France Media print-electronic
Document type Journal Article
PubMed
35072135
PubMed Central
PMC8556094
DOI
10.1016/j.deman.2021.100022
PII: S2666-9706(21)00022-6
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, concerns have been arisen on the use of renin-angiotensin system inhibitors (RASI) due to the potentially increased expression of Angiotensin-converting-enzyme (ACE)2 and patient's susceptibility to SARS-CoV2 infection. Diabetes mellitus have been recognized favoring the coronavirus infection with consequent increase mortality in COVID-19. No data have been so far reported in diabetic patients suffering from ST-elevation myocardial infarction (STEMI), a very high-risk population deserving of RASI treatment. METHODS: The ISACS-STEMI COVID-19 registry retrospectively assessed STEMI patients treated with primary percutaneous coronary intervention (PPCI) in March/June 2019 and 2020 in 109 European high-volume primary PCI centers. This subanalysis assessed the prognostic impact of chronic RASI therapy at admission on mortality and SARS-CoV2 infection among diabetic patients. RESULTS: Our population is represented by 3812 diabetic STEMI patients undergoing mechanical reperfusion, 2038 in 2019 and 1774 in 2020. Among 3761 patients with available data on chronic RASI therapy, between those ones with and without treatment there were several differences in baseline characteristics, (similar in both periods) but no difference in the prevalence of SARS-CoV2 infection (1.6% vs 1.3%, respectively, p = 0.786). Considering in-hospital medication, RASI therapy was overall associated with a significantly lower in-hospital mortality (3.3% vs 15.8%, p < 0.0001), consistently both in 2019 and in 2010. CONCLUSIONS: This is first study to investigate the impact of RASI therapy on prognosis and SARS-CoV2 infection of diabetic patients experiencing STEMI and undergoing PPCI during the COVID-19 pandemic. Both pre-admission chronic RASI therapy and in-hospital RASI did not negatively affected patients' survival during the hospitalization, neither increased the risk of SARS-CoV2 infection. TRIAL REGISTRATION NUMBER: NCT04412655.
3rd Medicine Division Department of Internal Medicine ASST Spedali Civili Brescia Italy
Azienda Ospedaliero Universitaria Ospedali Riuniti Trieste Italy
Azienda Ospedaliero Universitaria Sassari Italy
Cardiology Division Department of Internal Medicine National Taiwan University Hospital Tapei Taiwan
Cardiology Institute Instanbul University Instanbul Turkey
Carlos E Uribe Division of Cardiology Universidad UPB Universidad CES Medellin Colombia
Center for Cardiovascular Diseases Ohrid North Macedonia
Center Hospitalier d'Antibes Juan Les Pins Antibes France
Central Hospital of Medical University of Lodz Poland
Centre for Intensive Internal Medicine University Medical Centre Ljubljana Slovenia
Clinic Emergency Hospital of Bucharest Romania
Complexo Hospetaliero Universitario La Coruna La Coruna Spain
Department of Cardiology Hospital Bezmialem Vakıf University İstanbul Turkey
Department of Cardiology National Heart Center Singapore
Department of Cardiology National University Hospital Singapore
Department of Cardiology Queen Elizabeth Hospital University of Hong Kong Hong Kong
Department of Cardiology Queen Mary Hospital University of Hong Kong Hong Kong
Department of Cardiology Thoraxcentrum Twente Medisch Spectrum Twente Enschede the Netherlands
Department of Cardiology University Hospital Centre University of Zagreb Zagreb Croatia
Department of Statistical Sciences University of Padova Italy
Department of Teaching and Research Instituto de Cardiología de Corrientes Argentina
Division of Cardiology Alexandra Hospital Athens Greece
Division of Cardiology Assiut University Heart Hospital Assiut University Asyut Egypt
Division of Cardiology Attikon University Hospital Athens Greece
Division of Cardiology AUSL IRCCS Reggio Emilia Italy
Division of Cardiology Azienda Ospedaliera Ospedali Riuniti Marche Nord Pesaro Italy
Division of cardiology Blida University Hospital Blida Algeria
Division of Cardiology Bursa City Hospital Bursa Turkey
Division of Cardiology Center Hospitalier Universitaire de Lille Lille France
Division of Cardiology CHU Lariboisière AP HP Paris 7 University INSERM UMRS 942 France
Division of Cardiology Clinica Villa dei Fiori Acerra Italy
Division of Cardiology ComplejoHospitalario de Toledo Toledo Spain
Division of Cardiology Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
Division of Cardiology Groupe Hospitalier Mutualiste de Grenoble France
Division of Cardiology Heart Centre Turku Finland
Division of Cardiology Hopital Erasmus Universitè Libre de Bruxelles Belgium
Division of Cardiology Hospiatl Cordoba Cordoba Argentina
Division of Cardiology Hospital Cabueñes Gijon Spain
Division of Cardiology Hospital Clinico Universitario de Valencia Spain
Division of Cardiology Hospital de Santa Cruz CHLO Nova Medical School CEDOC Lisbon Portugal
Division of Cardiology Hospital de Santo António Porto Portugal
Division of Cardiology Hospital Puerta de Hierro Majadahonda Spain
Division of Cardiology Hospital Puerta del Mar Cadiz Spain
Division of cardiology Hospital Universitario de Canarias Santa Cruz de Tenerife Spain
Division of Cardiology Kontantopoulion Hospital Athens Greece
Division of Cardiology Medical University of Silezia Katowice Poland
Division of Cardiology Northwest Clinics Alkmaar The Netherlands
Division of Cardiology Odense Universitets Hospital Odense Danemark
Division of Cardiology Ospedale A Manzoni Lecco Italy
Division of Cardiology Ospedale Civico Arnas Palermo Italy
Division of Cardiology Ospedale degli Infermi ASL Biella Italy
Division of Cardiology Ospedale del Mare Napoli Italy
Division of Cardiology Ospedale F Spaziani Frosinone Italy
Division of Cardiology Ospedale G Moscati Aversa Italy
Division of Cardiology Ospedale Maggiore Bologna Italy
Division of Cardiology Ospedale S Maurizio Bolzano Italy
Division of Cardiology Ospedale San Giovanni di Dio e Ruggi d'Aragona Salerno Italy
Division of Cardiology Ospedale Sant'Anna Ferrara Italy
Division of Cardiology Ospedale Santa Chiara di Trento Italy
Division of Cardiology Ospedale Santa Maria delle Grazie Pozzuoli Italy
Division of Cardiology Ospedale Santa Maria Goretti Latina Italy
Division of Cardiology Otamendi Hospital Buenos Aires Argentina
Division of Cardiology Oulu University Hospital Finland
Division of Cardiology Radboud University Medical Center Nijmegen the Netherlands
Division of Cardiology St Antonius Hospital Nieuwegein The Netherlands
Division of Cardiology UMC Utrecht the Netherlands
Hospital Clínico Universitario Virgen de la Victoria Málaga Spain
Hospital Garcia de Orta Cardiology Department Pragal Almada HP Portugal
Hospital Germans Triasi Pujol Badalona Spain
Instituto Cardiovascular de Buenos Aires Buenos Aires Argentina
Instituto de Cardiologia de Santa Catarina Praia Comprida São José Brasil
Instituto de Cardiologia do Rio Grande do Sul Porto Alegre Brazil
Instituto de Cardiologia Integral Montevideo Uruguay
Interventional Cardiology Unit Azienda Ospedaliera Sanitaria Parma Italy
Interventional Cardiology Unit Azienda Ospedaliero Universitaria Ospedali Riuniti Ancona Italy
Interventional Cardiology Unit Heart Disease Institute Hospital Universitari de Bellvitge Spain
Invasive Cardiology and Congenital Heart Disease Patras University Hospital Patras Greece
Iraklion University Hospital Crete Greece
Maastricht University Medical Center the Netherlands
Tyumen Cardiology Research Center Russia
Universitario y Politécnico La Fe Valencia Spain
University Hospital Brno Medical Faculty of Masaryk University Brno Czech Republic
See more in PubMed
Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. e8. PubMed PMC
Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., Bao L., Zhang B., Liu G., Wang Z., Chappell M., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–879. PubMed PMC
Kuhn J.H., Li W., Choe H., Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci CMLS. 2004;61(21):2738–2743. PubMed PMC
De Luca G., Verdoia M., Savonitto S., Piatti L., Grosseto D., Morici N., Bossi I., Sganzerla P., Tortorella G., Cacucci M., Murena E., Toso A., Bongioanni S., Ravera A., Corrada E., et al. Impact of diabetes on clinical outcome among elderly patients with acute coronary syndrome treated with percutaneous coronary intervention: insights from the ELDERLY ACS 2 trial. J Cardiovasc Med. 2020;21(6):453–459. (Hagerstown) PubMed
De Luca G., Dirksen M.T., Spaulding C., Kelbæk H., Schalij M., Thuesen L., van der Hoeven B., Vink M.A., Kaiser C., Musto C., Chechi T., Spaziani G., Diaz de la Llera L.S., Pasceri V., Di Lorenzo E., et al. Impact of diabetes on long-term outcome after primary angioplasty: insights from the DESERT cooperation. Diabetes Care. 2013;36(4):1020–1025. PubMed PMC
Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., Clement D.L., Coca A., de Simone G., Dominiczak A., Kahan T., Mahfoud F., Redon J., Ruilope L., Zanchetti A., et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. J Hypertens. 2018;36(10):1953–2041. the task force for the management of arterial hypertension of the European society of cardiology and the European society of hypertension: the task force for the management of arterial h. PubMed
Niskanen L., Hedner T., Hansson L., Lanke J., Niklason A., C.A.P.P.P. Study Group Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blocker-based treatment regimen: a subanalysis of the Captopril prevention project. Diabetes Care. 2001;24(12):2091–2096. PubMed
Ostergren J., Poulter N.R., Sever P.S., Dahlöf B., Wedel H., Beevers G., Caulfield M., Collins R., Kjeldsen S.E., Kristinsson A., McInnes G.T., Mehlsen J., Nieminen M., O'Brien E., investigators A.S.C.O.T. The Anglo-Scandinavian cardiac outcomes trial: blood pressure-lowering limb: effects in patients with type II diabetes. J Hypertens. 2008;26(11):2103–2111. PubMed
Nathan D.M., Bayless M., Cleary P., Genuth S., Gubitosi-Klug R., Lachin J.M., Lorenzi G., Zinman B., DCCT/EDIC Research Group Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes. 2013;62(12):3976–3986. PubMed PMC
Silverio A., Di Maio M., Citro R., Esposito L., Iuliano G., Bellino M., Baldi C., De Luca G., Ciccarelli M., Vecchione C., Galasso G. Cardiovascular risk factors and mortality in hospitalized patients with COVID-19: systematic review and meta-analysis of 45 studies and 18,300 patients. BMC Cardiovasc Disord. 2021;21(1):23. PubMed PMC
Vaduganathan M., Vardeny O., Michel T., McMurray J.J .V, Pfeffer M.A., Solomon S.D. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659. PubMed PMC
Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F., Gong W., Liu X., Liang J., Zhao Q., Huang H., Yang B., Huang C. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. PubMed PMC
Mancia G., Rea F., Ludergnani M., Apolone G., Corrao G. Renin-angiotensin-aldosterone system blockers and the risk of COVID-19. N Engl J Med. 2020;382(25):2431–2440. PubMed PMC
Mehta N., Kalra A., Nowacki A.S., Anjewierden S., Han Z., Bhat P., Carmona-Rubio A.E., Jacob M., Procop G.W., Harrington S., Milinovich A., Svensson L.G., Jehi L., Young J.B., Chung M.K. Association of use of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers with testing positive for coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020;5(9):1020. PubMed PMC
Reynolds H.R., Adhikari S., Pulgarin C., Troxel A.B., Iturrate E., Johnson S.B., Hausvater A., Newman J.D., Berger J.S., Bangalore S., Katz S.D., Fishman G.I., Kunichoff D., Chen Y., Ogedegbe G., et al. Renin-angiotensin-aldosterone system inhibitors and risk of COVID-19. N Engl J Med. 2020;382(25):2441–2448. PubMed PMC
de Abajo F.J., Rodríguez-Martín S., Lerma V., Mejía-Abril G., Aguilar M., García-Luque A., Laredo L., Laosa O., Centeno-Soto G.A., Ángeles Gálvez M., Puerro M., González-Rojano E., Pedraza L., de Pablo I., Abad-Santos F., et al. Use of renin–angiotensin–aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet. 2020;395(10238):1705–1714. PubMed PMC
Fosbøl E.L., Butt J.H., Østergaard L., Andersson C., Selmer C., Kragholm K., Schou M., Phelps M., Gislason G.H., Gerds T.A., Torp-Pedersen C., Køber L. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use With COVID-19 diagnosis and mortality. JAMA. 2020;324(2):168–177. PubMed PMC
De Luca G., Cercek M., Jensen L.O., Vavlukis M., Calmac L., Johnson T., Roura I Ferrer G., Ganyukov V., Wojakowski W., von Birgelen C., Versaci F., Ten Berg J., Laine M., Dirksen M., Casella G., et al. Impact of COVID-19 pandemic and diabetes on mechanical reperfusion in patients with STEMI: insights from the ISACS STEMI COVID 19 registry. Cardiovasc Diabetol. 2020;19(1):215. PubMed PMC
De Luca G., Verdoia M., Cercek M., Jensen L.O., Vavlukis M., Calmac L., Johnson T., Ferrer G.R., Ganyukov V., Wojakowski W., Kinnaird T., van Birgelen C., Cottin Y., IJsselmuiden A., Tuccillo B., et al. Impact of COVID-19 pandemic on mechanical reperfusion for patients with STEMI. J Am Coll Cardiol. 2020;76(20):2321–2330. PubMed PMC
Tancredi M., Rosengren A., Svensson A.M., Kosiborod M., Pivodic A., Gudbjörnsdottir S., Wedel H., Clements M., Dahlqvist S., Lind M. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373(18):1720–1732. PubMed
Sattar N., Rawshani A., Franzén S., Rawshani A., Svensson A.M., Rosengren A., McGuire D.K., Eliasson B., Gudbjörnsdottir S. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation. 2019;139(19):2228–2237. PubMed
Piepoli M.F., Hoes A.W., Agewall S., Albus C., Brotons C., Catapano A.L., Cooney M.T., Corrà U., Cosyns B., Deaton C., Graham I., Hall M.S., Hobbs F.D.R., Løchen M.L., Löllgen H., et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37(29):2315–2381. (constituted by representati. PubMed PMC
Dagenais G.R., Pogue J., Fox K., Simoons M.L., Yusuf S. Angiotensin-converting-enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: a combined analysis of three trials. Lancet. 2006;368(9535):581–588. PubMed
Fox K.M. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study) Lancet. 2003;362(9386):782–788. PubMed
Braunwald E., Domanski M.J., Fowler S.E., Geller N.L., Gersh B.J., Hsia J., Pfeffer M.A., Rice M.M., Rosenberg Y.D., Rouleau J.L., PEACE Trial Investigators Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351(20):2058–2068. PubMed PMC
Pfeffer M.A., Braunwald E., Moyé L.A., Basta L., Brown E.J., Cuddy T.E., Davis B.R., Geltman E.M., Goldman S., Flaker G.C., Klein M., Lamas G.A., Packer M., Rouleau J., Rouleau J.L., et al. Effect of Captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 1992;327(10):669–677. PubMed
Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V., Federici M., Filippatos G., Grobbee D.E., Hansen T.B., Huikuri H.V., Johansson I., Jüni P., Lettino M., Marx N., et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. PubMed
Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292. e6. PubMed PMC
Wang X., Ye Y., Gong H., Wu J., Yuan J., Wang S., Yin P., Ding Z., Kang L., Jiang Q., Zhang W., Li Y., Ge J., Zou Y. The effects of different angiotensin II type 1 receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice. J Mol Cell Cardiol. 2016;97:180–190. PubMed
Agata J., Ura N., Yoshida H., Shinshi Y., Sasaki H., Hyakkoku M., Taniguchi S., Shimamoto K. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. Hypertens Res. 2006;29(11):865–874. official journal of the Japanese Society of Hypertension. PubMed
Dworakowska D., Grossman A.B. Renin-angiotensin system inhibitors in management of hypertension during the COVID-19 pandemic. J Physiol Pharmacol. 2020;71(2) an official journal of the Polish Physiological Society. PubMed
Watkins J. Preventing a covid-19 pandemic. BMJ. 2020:m810. PubMed
Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020;5(7):811–818. PubMed PMC
Chen T., Wu D., Chen H., Yan W., Yang D., Chen G., Ma K., Xu D., Yu H., Wang H., Wang T., Guo W., Chen J., Ding C., Zhang X., Huang J., Han M., Li S., Luo X., Zhao J.N.Q. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020:m1295. PubMed PMC
Yang J., Zheng Y., Gou X., Pu K., Chen Z., Guo Q., Ji R., Wang H., Wang Y., Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis IJID. 2020;94:91–95. official publication of the International Society for Infectious Diseases. PubMed PMC
Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan S., Zou X., Yuan S., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. PubMed PMC
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. PubMed PMC
Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W., the Northwell COVID-19 Research Consortium. Barnaby D.P., Becker L.B., Chelico J.D., Cohen S.L., Cookingham J., Coppa K., Diefenbach M.A., Dominello A.J., et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323(20):2052–2059. PubMed PMC
Onder G., Rezza G., Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323(18):1775–1776. PubMed
Guan W.J., Liang W.H., Zhao Y., Liang H.R., Chen Z.S., Li Y.M., Liu X.Q., Chen R.C., Tang C.L., Wang T., Ou C.Q., Li L., Chen P.Y., Sang L., Wang W., et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5) PubMed PMC
Bode B., Garrett V., Messler J., McFarland R., Crowe J., Booth R., Klonoff D.C. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol. 2020;14(4):813–821. PubMed PMC
Codo A.C., Davanzo G.G., Monteiro L de B., de Souza G.F., Muraro S.P., Virgilio-da-Silva J.V., Prodonoff J.S., Carregari V.C., de Biagi Junior C.A.O., Crunfli F., Jimenez Restrepo JL, Vendramini P.H., Reis-de-Oliveira G., Bispo Dos S.K, Toledo-Teixeira D.A., et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab. 2020;32(3):437–446. e5. PubMed PMC
Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. PubMed PMC
Herman-Edelstein M., Guetta T., Barnea A., Waldman M., Ben-Dor N., Barak Y., Kornowski R., Arad M., Hochhauser E., Aravot D. Expression of the SARS-CoV-2 receptorACE2 in human heart is associated with uncontrolled diabetes, obesity, and activation of the renin angiotensin system. Cardiovasc Diabetol. 2021;20(1):90. PubMed PMC
Ramos-Rincón J.M., Pérez-Belmonte L.M., Carrasco-Sánchez F.J., Jansen-Chaparro S., De-Sousa-Baena M., Bueno-Fonseca J., Pérez-Aguilar M., Arévalo-Cañas C., Bacete Cebrian M., Méndez-Bailón M., Fiteni M.I, González G.A, Navarro R.F, Tuñón de A.C, Muñiz N.G, et al. Cardiometabolic therapy and mortality in very old patients with diabetes hospitalized due to COVID-19. J Gerontol A Biol Sci Med Sci. 2021 PubMed PMC
Cohen J.B., Hanff T.C., William P., Sweitzer N., Rosado-Santander N.R., Medina C., Rodriguez-Mori J.E., Renna N., Chang T.I., Corrales-Medina V., Andrade-Villanueva J.F., Barbagelata A., Cristodulo-Cortez R., Díaz-Cucho O.A., Spaak J., et al. Continuation versus discontinuation of renin-angiotensin system inhibitors in patients admitted to hospital with COVID-19: a prospective, randomised, open-label trial. Lancet Respir Med. 2021;9(3):275–284. PubMed PMC
Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H., Caforio A.L.P., Crea F., Goudevenos J.A., Halvorsen S., Hindricks G., Kastrati A., Lenzen M.J., Prescott E., Roffi M., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018;39(2):119–177. PubMed
De Luca G., Cercek M., Okkels Jensen L., Bushljetikj O., Calmac L., Johnson T., Gracida Blancas M., Ganyukov V., Wojakowski W., von Birgelen C., IJsselmuiden A., Tuccillo B., Versaci F., Ten Berg J., Laine M., et al. Impact of renin-angiotensin system inhibitors on mortality during the COVID pandemic among STEMI patients undergoing mechanical reperfusion: insight from an international STEMI registry. Biomed Pharmacother. 2021;138 PubMed PMC
Bozkurt B., Kovacs R., Harrington B. Joint HFSA/ACC/AHA statement addresses concerns Re: using RAAS antagonists in COVID-19. J Card Fail. 2020;26(5):370. PubMed PMC
Lopes R.D., Macedo A.V.S., de Barros E Silva P.G.M., Moll-Bernardes R.J., dos Santos T.M., Mazza L., Feldman A., D'Andréa Saba Arruda G., de Albuquerque D.C., Camiletti A.S., de Sousa A.S., de Paula T.C., Giusti K.G.D., Domiciano R.A.M., Noya-Rabelo M.M., et al. Effect of discontinuing vs continuing angiotensin-converting enzyme inhibitors and Angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID-19. JAMA. 2021;325(3):254. PubMed PMC
ClinicalTrials.gov
NCT04412655