Excretion of Dietary Zinc in Mammals (rats) Fed Overdoses of Zinc Lactate and Infected with Tapeworms
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35095309
PubMed Central
PMC8776305
DOI
10.2478/helm-2021-0038
PII: helm-2021-0038
Knihovny.cz E-zdroje
- Klíčová slova
- excretion, fecal, rat, supplement, tapeworm, zinc,
- Publikační typ
- časopisecké články MeSH
Tapeworms parasitize at sites that are important for the management of micronutrients, including zinc. Therefore, it has been hypothesized that tapeworms will significantly affect the excretion of zinc in the feces of a host. The aim of this work was to evaluate the effects that tapeworms have on the excretion of zinc in the feces of the host. Rats were divided into 4 groups: groups 0T and MT (infected with Hymenolepis diminuta (Rudolphi, 1819)) and groups 00 and M0 (uninfected). The experimental groups (M0 and MT) were fed a standard rodent compound feed (ST-1) with added zinc lactate; the daily zinc intake was 20.5 mg. The control groups (00 and 0T) were fed only ST-1 with 1.75 mg of added Zn per day. For six weeks, the amount of consumed feed was recorded and fecal samples were taken. The samples were then analyzed by optical emission spectrometry (ICP-OES), and levels of excreted zinc were subsequently calculated as a percentage. The most signifi cant difference in zinc excretion levels between the experimental groups was observed in the third week, when rats infected with tapeworms (MT) excreted substantially lower levels of zinc than did uninfected rats (M0). This difference amounted to 28.36 % (p <0.01). In the control groups, tapeworms affected the excretion of zinc in the feces to a lesser extent, and the most substantial difference in zinc levels was seen in the fifth week (8.46 %). However, there was no signifi cant difference in zinc excretion levels between the control groups during any of the monitored weeks. Tapeworms in the host affect levels of zinc excreted in the feces. However, this is dependent on the amount or form of zinc ingested.
Zobrazit více v PubMed
CHANEY R.L. CHANEY R.L. Cadmium and zinc, School of Geography, Geology and the Environment. Kingston University; London: 2010. Trace elements in soils. pp. 409–439. DOI
ČADKOVÁ Z., SZÁKOVÁ J., MIHOLOVÁ D., VÁLEK P., PACÁKOVÁ Z., VADLEJCH J., LANGROVÁ I., JANKOVSKÁ I.. Faecal excretion dynamic during subacute oral exposure to different Pb species in Rattus norvegicus. Biol Trace Elem Res. 2013;152:225–232. doi: 10.1007/s12011-013-9609-8. PubMed DOI
DAS P., SAMANTARAY S., ROUT G.R.. Studies on cadmium toxicity in plants: a review. Environ Pollut. 1997;98:29–36. doi: 10.1016/S0269-7491(97)00110-3. PubMed DOI
DAVIES N.T., NIGHTINGALE R.. The effects of phytate on intestinal absorption and secretion of zinc, and whole-body retention of Zn, copper, iron and manganese in rats. Br J Nutr. 1975;34:243–258. doi: 10.1017/S0007114575000293. PubMed DOI
DECKER C.F., BYERRUM R.U., HOP ERT C.A.. A study of the distribution and retention of cadmium-115 in the albino rat. Arch Biochem Biophys. 1957;66:140–145. doi: 10.1016/00039861(57)90544-1. PubMed DOI
ERDMAN J.W., MACDONALD I.A., ZEISEL S.H. Present knowledge in nutrition. 10nd Edition. Wiley-Blackwell; Oxford: 2012. p. 1328.
FERGUSON L.E., GIBS ON S.R., OPARE-OBISAW C., OUNPUU S., LAMB A C.H.. Dietary strategies for improving the zinc nutriture of rural, southern Malawian and Ghanaian children. Ecol Food Nutr. 1995;34:33–47. doi: 10.1080/03670244.1995.9991445. DOI
GONÇALVES-NETO J.F., ALONSO TOLDO M.P., DOMINGUES SANTOS C., CLÓVISDO PRADO JÚNIOR J., FONSECA C., ALBUQUERQUE S.. Effect of zinc supplementation in pregnant mice during experimental Trypanosoma cruzi infection. Res Vet Sci. 2011;90:269–274. doi: 10.1016/j.rvsc.2010.06.008. PubMed DOI
HALL A., HEWITT G., TUF REY V., SILVA N.D.. A review and meta‐analysis of the impact of intestinal worms on child growth and nutrition. Matern Child Nutr. 2008;4:118–123. doi: 10.1111/j.1740-8709.2007.00127.x. PubMed DOI PMC
HORÁKOVÁ B., ČADKOVÁ Z., SZÁKOVÁ J., JANKOVSKÁ I.. The identification of risk and essential elements along the strobila of the rat tapeworm Hymenolepis diminuta. J Helminthol. 2017;91:555–560. doi: 10.1017/S0022149X16000535. PubMed DOI
BROWN K.H., RIVERA J.A., BHUTTA Z., GIBS ON R.S., KING J.C., LÖNNERDAL B., RUEL M. T., SANDTRÖM B., WASANTWISUT E., HOTZ C., LOPEZ DE ROMAÑA D., PEERSON J.M.. International Zinc Nutrition Consultative Group (IZiNCG). Technical Document No.1. Assessment of the Risk of Zinc Deficiency in Populations and Options for Its Control. Food Nutr Bull. 2004;25:94–203. PubMed
HOUSE W.A., WELCH R.M., VAN CAMP EN D.R.. Effect of phytic acid on the absorption, distribution, and endogenous excretion of zinc in rats. J Nutr. 1982;112:941–953. doi: 10.1093/jn/112.5.941. PubMed DOI
ISAURE M.P., HUGUET S., MEYER C.L., CASTILLO-MICHEL H., TESTEMALE D., VANTELON D., SAUMITOU-LAPRADE P., VERBRUGGEN N., SARRET G.. Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques. J Exp Bot. 2015;66:3201–3214. doi: 10.1093/jxb/erv131. PubMed DOI
JACKSON M.J., JONES D.A., EDWARDS R.H., SWAINBANK I.G., COLEMAN M.L.. Zinc homeostasis in man: studies using a new stable isotope-dilution technique. Zinc homeostasis in man: studies using a new stable isotope-dilution technique. Br J Nutr. 1984;51:199–208. doi: 10.1079/BJN19840024. PubMed DOI
JANKOVSKÁ I., SLOUP V., SZÁKOVÁ J., LANGROVÁ I., SLOUP S.. How the tapeworm Hymenolepis diminuta affects zinc and cadmium accumulation in a host fed a hyperaccumulating plant (Arabidopsis halleri) Environ. Sci. Pollut. Res. 2016;23:19126–19133. doi: 10.1007/s11356-016-7123-1. PubMed DOI
JANKOVSKÁ I., SLOUP V., SZÁKOVÁ J., MAGDÁLEK J., NECHYBOVÁ S., PEŘINKOVÁ P., LANGROVÁ I.. How tapeworm infection and consumption of a Cd and Zn hyperaccumulating plant may affect Cu, Fe, and Mn concentrations in an animal—a plant consumer and tapeworm host. Environ. Sci. Pollut. Res. 2018;25:4190–4196. doi: 10.1007/s11356-017-0787-3. PubMed DOI
JENSEN J., KYVSGAARD N. CH ., BATTISTI A., BAPTISTE K. E.. Environmental and public health related risk of veterinary zinc in pig production – Using Denmark as an example. Environ Int. 2018;114:181–190. doi: 10.1016/j.envint.2018.02.007. PubMed DOI
JENSEN-WAERN M., MELIN L., LINDBERG R., JOHANNIS ON A., PETERSSON L., WALLGREN P.. Dietary zinc oxide in weaned pigs — effects on performance, tissue concentrations, morphology, neutrophil functions and faecal microflora. Res Vet Sci. 1998;64:225–231. doi: 10.1016/S0034-5288(98)90130-8. PubMed DOI
JOHNSON P.E. MILANINO R., RAINSF ORD K.D., VELO G.P. Copper and Zinc in Inflammation. Inflammation and Drug Therapy Series. Volume 4. Springer; Dordrecht: 1989. Zinc absorption and excretion in humans and animals. DOI
KHOOB AKHT Z., ROOSTAEI-ALI MEHR M., MOHAM ADI M., MOHAMMADGHASEMI F. MEHDI SOHAN M.. Supplementation of various zinc sources modify sexual development andtesticular IGF family gene expression in pre-pubertal male Japanese quail. Res Vet Sci. 2020;130:87–92. doi: 10.1016/j.rvsc.2020.03.004. PubMed DOI
KING J.C., SHAMES D.M., WOODHOUSE L.R.. Zinc homeostasis in humans. J Nutr. 2000;130:1360–1366. doi: 10.1093/jn/130.5.1360S. PubMed DOI
KREBS N.F.. Overview of Zinc Absorption and Excretion in the Human Gastrointestinal Tract. J Nutr. 2000;130:1374–1377. doi: 10.1093/jn/130.5.1374S. PubMed DOI
MILNE D.B., CANFIELD W.K., MAHALKO J.R., SANDSTEAD H.H.. Effect of oral folic acid supplements on zinc, copper, and iron absorption and excretion. Am J Clin Nutr. 1984;39:535–539. doi: 10.1093/ajcn/39.4.535. PubMed DOI
PHIPS D.A. LEP N.W. Chemistry and Biochemistry of Trace Metals in Biological Systems. Effect of Heavy Metal Pollution on Plants. Pollution Monitoring Series. Springer, Dordrecht. 1981. DOI
SCOTT M.E., KOSKI K.G.. Zinc Deficiency Impairs Immune Responses against Parasitic Nematode Infections at Intestinal and Systemic Sites. J Nutr. 2000;130:1412. doi: 10.1093/jn/130.5.1412S. –. PubMed DOI
SHENGKUI Y., YIYONG CH., DONGLAN W., XIAOYAN L., CHUNZHU L.. A comparative study on the bioavailability of zinc lactate and zinc gluconate in rats. Ying Yang Xue Bao. 1994;16:51–55.
SLOUP V., JANKOVSKÁ I., SZÁKOVÁ J., MAGDÁLEK J., SLOUP S., LANGROVÁ I.. Effects of tapeworm infection on absorption and excretion of zinc and cadmium by experimental rats. Environ. Sci. Pollut. Res. 2018;25:35464–35470. doi: 10.1007/s11356-018-3397-9. PubMed DOI
SURES B., GRUBE K., TARASCHEWS KI H.. Experimental Studies on the Lead Accumulation in the Cestode Hymenolepis diminuta and its Final Host, Rattus norvegicus. Ecotoxicology. 2002;11:365–368. doi: 10.1023/A:1020561406624. PubMed DOI
WADA L., TURNLUND J.R., KING J.C.. Zinc Utilization in Young Men Fed Adequate and Low Zinc Intakes. J Nutr. 1985;110:1345–1354. doi: 10.1093/jn/115.10.1345. PubMed DOI
WIILIAMS R.J.P.. Zinc in evolution. J Inorg Biochem. 2012;111:104–109. doi: 10.1016/j.jinorgbio.2012.01.004. PubMed DOI