Short-term arterial compliance changes in the context of systolic blood pressure influence
Jazyk angličtina Země Česko Médium print
Typ dokumentu srovnávací studie, časopisecké články
PubMed
35099252
PubMed Central
PMC8884402
DOI
10.33549/physiolres.934838
PII: 934838
Knihovny.cz E-zdroje
- MeSH
- arteriální tlak * MeSH
- časové faktory MeSH
- cévní rezistence MeSH
- fyziologická adaptace MeSH
- lidé MeSH
- matematické pojmy MeSH
- mladiství MeSH
- mladý dospělý MeSH
- modely kardiovaskulární MeSH
- polohování pacienta MeSH
- supinační poloha MeSH
- systola MeSH
- test na nakloněné rovině MeSH
- tuhost cévní stěny * MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Arterial compliance (C) is a complex parameter influencing ventricular-arterial coupling depending on structural (arterial wall remodeling) and functional (blood pressure, smooth muscles tone) changes. Based on Windkessel model, C can be calculated as the ratio of a time constant Tau characterizing diastolic blood pressure decay and total peripheral resistance (TPR). The aim of this study was to assess changes of C in the context of systolic arterial pressure (SAP) perturbations during four physiological states (supine rest, head-up tilt, supine recovery, mental arithmetic). In order to compare pressure independent changes of C a new index of C120 was proposed predicting C value at 120 mm Hg of SAP. Eighty-one healthy young subjects (48 f, average age 18.6 years) were examined. Hemodynamic parameters were measured beat-to-beat using volume-clamp photoplethysmographic method and impedance cardiography. We observed that C was strongly related to SAP values on the beat-to-beat time scale. Interestingly, C120 decreased significantly during stress phases. In conclusion, potential changes of SAP should be considered when measuring C. Arterial compliance changes in the opposite direction to TPR pointing towards influence of vascular tone changes on its value.
Zobrazit více v PubMed
ARAI T, LEE K, COHEN RJ. A novel algorithm to continuously monitor change of total peripheral resistance using peripheral arterial blood pressure values for prediction of orthostatic intolerance. Proceedings of the International Astronautical Congress Glasgow; Scotland. 2008.p. IAC-08.A1.2.13.
ARAI T, LEE K, STENGER MB, PLATTS SH, MECK JV, COHEN RJ. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts. Acta Astronaut. 2011;68:770–777. doi: 10.1016/j.actaastro.2010.10.008. DOI
BANK AJ, WILSON RF, KUBO SH, HOLTE JE, DRESING TJ, WANG H. Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties. Circ Res. 1995;77:1008–1016. doi: 10.1161/01.RES.77.5.1008. PubMed DOI
CHEMLA D, ANTONY I, LECARPENTIER Y, NITENBERG A. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol. 2003;285:H614–H620. doi: 10.1152/ajpheart.00823.2002. PubMed DOI
COHEN J, PIGNANELLI C, BURR J. The effect of body position on measures of arterial stiffness in humans. J Vasc Res. 2020;57:143–151. doi: 10.1159/000506351. PubMed DOI
COOPER VL, HAINSWORTH R. Carotid baroreceptor reflexes in humans during orthostatic stress. Exp Physiol. 2001;86:677–681. doi: 10.1113/eph8602213. PubMed DOI
COX RH. Arterial wall mechanics and composition and the effects of smooth muscle activation. Am J Physiol. 1975;229:807–812. doi: 10.1152/ajplegacy.1975.229.3.807. PubMed DOI
CZIPPELOVA B, TURIANIKOVA Z, KROHOVA J, WISZT R, LAZAROVA Z, POZORCIAKOVA K, CILJAKOVA M, JAVORKA M. Arterial stiffness and endothelial function in young obese patients - vascular resistance matters. J Atheroscler Thromb. 2019;26:1015–1025. doi: 10.5551/jat.47530. PubMed DOI PMC
GAVISH B, IZZO JL., JR Arterial stiffness: Going a step beyond. Am J Hypertens. 2016;29:1223–1233. doi: 10.1093/ajh/hpw061. PubMed DOI
GIUDICI A, KHIR AW, REESINK KD, DELHAAS T, SPRONCK B. Five years of cardio-ankle vascular index (CAVI) and CAVI0: how close are we to a pressure-independent index of arterial stiffness? J Hypertens. 2021;39:2128–2138. doi: 10.1097/HJH.0000000000002928. PubMed DOI
HALLOCK P, BENSON IC. Studies on the elastic properties of human isolated aorta. J Clin Invest. 1937;16:595–602. doi: 10.1172/JCI100886. PubMed DOI PMC
HASEGAWA M, RODBARD S. Effect of posture on arterial pressures, timing of the arterial sounds and pulse wave velocities in the extremities. Cardiology. 1979;64:122–132. doi: 10.1159/000170585. PubMed DOI
HAYASHI K, HANDA H, NAGASAWA S, OKUMURA A, MORITAKE K. Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech. 1980;13:175–184. doi: 10.1016/0021-9290(80)90191-8. PubMed DOI
HAYASHI K, YAMAMOTO T, TAKAHARA A, SHIRAI K. Clinical assessment of arterial stiffness with cardio-ankle vascular index: theory and applications. J Hypertens. 2015;33:1742–1757. doi: 10.1097/HJH.0000000000000651. discussion 1757. PubMed DOI
HUIJBEN AMT, MATTACE-RASO FUS, DEINUM J, LENDERS J, Van den MEIRACKER AH. Aortic augmentation index and pulse wave velocity in response to head-up tilting: effect of autonomic failure. J Hypertens. 2012;30:307–314. doi: 10.1097/HJH.0b013e32834f09ee. PubMed DOI
KROEKER EJ, WOOD EH. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ Res. 1955;3:623–632. doi: 10.1161/01.RES.3.6.623. PubMed DOI
KUIPERS NT, SAUDER CL, CARTER JR, RAY CA. Neurovascular responses to mental stress in the supine and upright postures. J Appl Physiol (1985) 2008;104:1129–1136. doi: 10.1152/japplphysiol.01285.2007. PubMed DOI PMC
LANTELME P, MESTRE C, LIEVRE M, GRESSARD A, MILON H. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension. 2002;39:1083–1087. doi: 10.1161/01.HYP.0000019132.41066.95. PubMed DOI
LAURENT S, COCKCROFT J, Van BORTEL L, BOUTOUYRIE P, GIANNATTASIO C, HAYOZ D, PANNIER B, VLACHOPOULOS C, WILKINSON I, STRUIJKER-BOUDIER H EUROPEAN NETWORK FOR NON-INVASIVE INVESTIGATION OF LARGE ARTERIES. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254. PubMed DOI
LEVENSON JA, SAFAR ME, SIMON AC, KHEDER AI, DAOU JN, LEVY BI. Systemic arterial compliance and diastolic runoff in essential hypertension. Angiology. 1981;32:402–413. doi: 10.1177/000331978103200606. PubMed DOI
LINDVALL K, KAHAN T, DE U, ÖSTERGREN J, HJEMDAHL P. Stress-induced changes in blood pressure and left ventricular function in mild hypertension. Clin Cardiol. 1991;14:125–132. doi: 10.1002/clc.4960140208. PubMed DOI
LYDAKIS C, MOMEN A, BLAHA C, GUGOFF S, GRAY K, HERR M, LEUENBERGER UA, SINOWAY LI. Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise. J Hum Hypertens. 2008;22:320–328. doi: 10.1038/jhh.2008.4. PubMed DOI
MATSUMURA K, NOGUCHI H, ROLFE P, YAMAKOSHI T, MATSUOKA Y. Differential effect of two mental stress tasks on arterial stiffness. Jpn Psychol Res. 2019;61:249–261. doi: 10.1111/jpr.12235. DOI
McENIERY CM, YASMIN HALL IR, QASEM A, WILKINSON IB, COCKCROFT JR. Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The Anglo-Cardiff Collaborative Trial (ACCT) J Am Coll Cardiol. 2005;46:1753–1760. doi: 10.1016/j.jacc.2005.07.037. PubMed DOI
NAGAI Y, HELWEGEN J, FLEG JL, BEEMER MK, EARLEY CJ, METTER EJ. Associations of aortic Windkessel function with age, gender and cardiovascular risk factors. Ultrasound Med Biol. 2001;27:1207–1210. doi: 10.1016/S0301-5629(01)00445-8. PubMed DOI
NARDONE M, INCOGNITO ANTHONY V, MILLAR PHILIP J. Evidence for pressure-independent sympathetic modulation of central pulse wave velocity. J Am Heart Assoc. 2018;7:e007971. doi: 10.1161/JAHA.117.007971. PubMed DOI PMC
O’LEARY DD, KIMMERLY DS, CECHETTO AD, SHOEMAKER JK. Differential effect of head-up tilt on cardiovagal and sympathetic baroreflex sensitivity in humans. Exp Physiol. 2003;88:769–774. doi: 10.1113/eph8802632. PubMed DOI
O’ROURKE MF, HASHIMOTO J. Mechanical factors in arterial aging: A clinical perspective. J Am Coll Cardiol. 2007;50:1–13. doi: 10.1016/j.jacc.2006.12.050. PubMed DOI
PAGANI M, MIRSKY I, BAIG H, MANDERS WT, KERKHOF P, VATNER SF. Effects of age on aortic pressure-diameter and elastic stiffness-stress relationships in unanesthetized sheep. Circ Res. 1979;44:420–429. doi: 10.1161/01.RES.44.3.420. PubMed DOI
SAGAWA K, LIE RK, SCHAEFER J. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift für Biologie 37: 483–526 (1899) J Mol Cell Cardiol. 1990;22:253–254. doi: 10.1016/0022-2828(90)91459-K. PubMed DOI
SCHROEDER EC, ROSENBERG AJ, HILGENKAMP TIM, WHITE DW, BAYNARD T, FERNHALL B. Effect of upper body position on arterial stiffness: influence of hydrostatic pressure and autonomic function. J Hypertens. 2017;35:2454–2461. doi: 10.1097/HJH.0000000000001481. PubMed DOI
STERGIOPULOS N, MEISTER JJ, WESTERHOF N. Evaluation of methods for estimation of total arterial compliance. Am J Physiol. 1995;268:H1540–H1548. doi: 10.1152/ajpheart.1995.268.4.H1540. PubMed DOI
SUGAWARA J, WILLIE CK, MIYAZAWA T, KOMINE H, AINSLE PN, OGOH S. Effects of transient change in carotid arterial stiffness on arterial baroreflex during mild orthostatic stimulation. Artery Res. 2012;6:130–135. doi: 10.1016/j.artres.2012.05.002. DOI
TAN I, SPRONCK B, KIAT H, BARIN E, REESINK KD, DELHAAS T, AVOLIO AP, BUTLIN M. Heart rate dependency of large artery stiffness. Hypertension. 2016;68:236–242. doi: 10.1161/HYPERTENSIONAHA.116.07462. PubMed DOI
VLACHOPOULOS C, KOSMOPOULOU F, ALEXOPOULOS N, IOAKEIMIDIS N, SIASOS G, STEFANADIS C. Acute mental stress has a prolonged unfavorable effect on arterial stiffness and wave reflections. Psychosom Med. 2006;68:231–237. doi: 10.1097/01.psy.0000203171.33348.72. PubMed DOI
WASMUND WL, WESTERHOLM EC, WATENPAUGH DE, WASMUND SL, SMITH ML. Interactive effects of mental and physical stress on cardiovascular control. J Appl Physiol (1985) 2002;92:1828–1834. doi: 10.1152/japplphysiol.00019.2001. PubMed DOI