Influence of Blood Pressure and Heart Rate on PWV Measurement: Assessment Under Real-Time Blood Pressure Monitoring
Language English Country Czech Republic Media print
Document type Journal Article
PubMed
39903887
PubMed Central
PMC11835220
DOI
10.33549/physiolres.935372
PII: 935372
Knihovny.cz E-resources
- MeSH
- Pulse Wave Analysis * methods MeSH
- Adult MeSH
- Blood Pressure * physiology MeSH
- Humans MeSH
- Blood Pressure Determination methods MeSH
- Young Adult MeSH
- Heart Rate * physiology MeSH
- Vascular Stiffness physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Pulse Wave Velocity (PWV) is widely used to assess arterial elasticity and is an independent risk factor for cardiovascular disease, but it is influenced by multiple factors. Objective is to assess the impact of blood pressure and heart rate on PWV. Twenty healthy young individuals were enlisted as subjects. Real-time blood pressure monitoring was performed by non-invasive continuous blood pressure measuring instrument during the detection of subjects' carotid PWV. During real-time blood pressure monitoring, exercise load caused fluctuations in blood pressure and heart rate, and PWV changes of each subject under different blood pressure and heart rate conditions were recorded simultaneously. Among the 20 subjects, PWV was associated with blood pressure in four subjects and heart rate in one subject. PWV increased with rising blood pressure when the systolic pressure fluctuation range was >=30mmHg, diastolic pressure fluctuation range was >=18mmHg, and mean arterial pressure fluctuation range was >=20mmHg. PWV increased with rising heart rate, when the heart rate fluctuation range was >30 beats/min. Blood pressure and heart rate have some influence on PWV. However, the fluctuation range of blood pressure and heart rate should reach a certain value, the impact is significant. Keywords: Pulse wave velocity, Blood pressure, Heart rate.
See more in PubMed
Gedikli O, Kiris A, Karahan C. Circulating levels of erythropoietin and its relation to arterial stiffness in patients with hypertension. Int J Clin Exp Med. 2013;6:706–711. PubMed PMC
Wang ZG, Chen BW, Lü NQ, Cheng YM, Dang AM.Relationships between use of statins and arterial stiffness in normotensive and hypertensive patients with coronary artery disease Chin Med J 20131263087-309210.3760/cma.j.issn.0366-6999.20130789 PubMed DOI
Mitchell GF. Arterial stiffness: insights from Framingham and Iceland. Current Opinion in Nephrology and Hypertension. 2015;24:1–7. doi: 10.1097/MNH.0000000000000092. PubMed DOI
Svec D, Czippelova B, Cernanova Krohova J, Mazgutova N, Wiszt R, Turianikova Z, Matuskova L, Javorka M. Short-term arterial compliance changes in the context of systolic blood pressure influence. Physiol Res. 2021;70:S339–S348. doi: 10.33549/physiolres.934838. PubMed DOI PMC
Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254. PubMed DOI
Svačinová J, Hrušková J, Jakubík J, Budinskaya K, Hidegová S, Fabšík M, Sieglová H, Kaščáková Z, Novák J, Nováková Z. Variability of peripheral pulse wave velocity in patients with diabetes mellitus type 2 during orthostatic challenge. Physiol Res. 2020;69:S433–S441. doi: 10.33549/physiolres.934594. PubMed DOI PMC
Tagawa K, Ra SG, Kumagai H, Yoshikawa T, Yoshida Y, Takekoshi K, Sakai S, Miyauchi T, Maeda S. Effects of resistance training on arterial compliance and plasma endothelin-1 levels in healthy men. Physiol Res. 2018;67:S155–S166. doi: 10.33549/physiolres.933818. PubMed DOI
Leone D, Buraioli I, Mingrone G, Lena D, Sanginario A, Vallelonga F, Tosello F, Avenatti E, Cesareo M, Astarita A, Airale L, Sabia L, Veglio F, Demarchi D, Milan A. Accuracy of a new instrument for noninvasive evaluation of pulse wave velocity: the arterial stiffness faithful tool assessment project. J Hypertens. 2021;39:2164–2172. doi: 10.1097/HJH.0000000000002925. PubMed DOI
Munakata M. Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: recent evidence and clinical applications. Curr Hypertens Rev. 2014;10:49–57. doi: 10.2174/157340211001141111160957. PubMed DOI
Eriksson MD, Eriksson JG, Kautiainen H, Salonen MK, Mikkola TM, Kajantie E, Wasenius N, von Bonsdorff M, Korhonen P, Laine MK. Higher carotid-radial pulse wave velocity is associated with non-melancholic depressive symptoms in men - findings from Helsinki Birth Cohort Study. Ann Med. 2021;53:531–540. doi: 10.1080/07853890.2021.1904277. PubMed DOI PMC
Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–646. doi: 10.1016/j.jacc.2013.09.063. PubMed DOI PMC
Li X, Jiang J, Zhang H, Wang H, Han D, Zhou Q, Gao Y, Yu S, Qi Y. Measurement of carotid pulse wave velocity using ultrafast ultrasound imaging in hypertensive patients. J Med Ultrasonics. 2017;44:183–190. doi: 10.1007/s10396-016-0755-4. PubMed DOI
Gu W, Wu J, Pei Y, Ji J, Wu H, Wu J. Evaluation of common carotid stiffness via echo tracking in hypertensive patients complicated by acute aortic dissection. J Ultrasound Med. 2021;40:929–936. doi: 10.1002/jum.15466. PubMed DOI PMC
Kim HL, Kim SH. Pulse wave velocity in atherosclerosis. Front Cardiovasc Med. 2019;6:41. doi: 10.3389/fcvm.2019.00041. PubMed DOI PMC
Ma Y, Choi J, Hourlier-Fargette A, Xue Y, Chung HU, Lee JY, Wang X, Xie Z, Kang D, Wang H, et al. Relation between blood pressure and pulse wave velocity for human arteries. Proceedings National Acad Sci USA. 2018;115:11144–11149. doi: 10.1073/pnas.1814392115. PubMed DOI PMC
Koivistoinen T, Lyytikäinen LP, Aatola H, Luukkaala T, Juonala M, Viikari J, Lehtimäki T, Raitakari OT, Kähönen M, Hutri-Kähönen N. Pulse wave velocity predicts the progression of blood pressure and development of hypertension in young adults. Hypertension. 2018;71:451–456. doi: 10.1161/HYPERTENSIONAHA.117.10368. PubMed DOI
Tan I, Butlin M, Spronck B, Xiao H, Avolio A. Effect of heart rate on arterial stiffness as assessed by pulse wave velocity. Current hypertension reviews. 2018;14:107–122. doi: 10.2174/1573402113666170724100418. PubMed DOI
Palatini P. Role of elevated heart rate in the development of cardiovascular disease in hypertension. Hypertension. 2011;58:745–750. doi: 10.1161/HYPERTENSIONAHA.111.173104. PubMed DOI
Lantelme P, Mestre C, Lievre M, Gressard A, Milon H. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension. 2002;39:1083–1087. doi: 10.1161/01.HYP.0000019132.41066.95. PubMed DOI
Millasseau SC, Stewart AD, Patel SJ, Redwood SR, Chowienczyk PJ. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension. 2005;45:222–226. doi: 10.1161/01.HYP.0000154229.97341.d2. PubMed DOI
Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54:1328–1336. doi: 10.1161/HYPERTENSIONAHA.109.137653. PubMed DOI