Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review

. 2024 Mar 12 ; () : . [epub] 20240312

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38472509

Odkazy
PubMed 38472509
DOI 10.1007/s12011-024-04122-7
PII: 10.1007/s12011-024-04122-7
Knihovny.cz E-zdroje

Residual concentrations of some trace elements and lightweight metals, including cadmium, copper, lead, mercury, silver, zinc, nickel, chromium, arsenic, gallium, indium, gold, cobalt, polonium, and thallium, are widely detected in aquatic ecosystems globally. Although their origin may be natural, human activities significantly elevate their environmental concentrations. Metals, renowned pollutants, threaten various organisms, particularly crustaceans. Due to their feeding habits and habitat, crustaceans are highly exposed to contaminants and are considered a crucial link in xenobiotic transfer through the food chain. Moreover, crustaceans absorb metals via their gills, crucial pathways for metal uptake in water. This review summarises the adverse effects of well-studied metals (Cd, Cu, Pb, Hg, Zn, Ni, Cr, As, Co) and synthesizes knowledge on the toxicity of less-studied metals (Ag, Ga, In, Au, Pl, Tl), their presence in waters, and impact on crustaceans. Bibliometric analysis underscores the significance of this topic. In general, the toxic effects of the examined metals can decrease survival rates by inducing oxidative stress, disrupting biochemical balance, causing histological damage, interfering with endocrine gland function, and inducing cytotoxicity. Metal exposure can also result in genotoxicity, reduced reproduction, and mortality. Despite current toxicity knowledge, there remains a research gap in this field, particularly concerning the toxicity of rare earth metals, presenting a potential future challenge.

Zobrazit více v PubMed

Biswas A, Chandra BP, Prathibha C (2023) Highly efficient and simultaneous remediation of heavy metal ions (Pb(II), Hg(II), As(V), As(III) and Cr(VI)) from water using Ce intercalated and ceria decorated titanate nanotubes. Appl Surf Sci 612:155841. https://doi.org/10.1016/j.apsusc.2022.155841 DOI

de Vries W, Kros J, Voogd JC, Ros GH (2023) Integrated assessment of agricultural practices on large scale losses of ammonia, greenhouse gases, nutrients and heavy metals to air and water. Sci Total Environ 857:159220. https://doi.org/10.1016/j.scitotenv.2022.159220 DOI

Nyarko E, Boateng CM, Asamoah O, Edusei MO, Mahu E (2023) Potential human health risks associated with ingestion of heavy metals through fish consumption in the Gulf of Guinea. Toxicol Rep 10:117–123. https://doi.org/10.1016/j.toxrep.2023.01.005 DOI PMC

Zhang YM, Lin CY, Li BZ, Dong WR, Shu MA (2023) Bioaccumulation of Cd and comparative transcriptome analysis after the antagonism of Se in the hepatopancreas of estuary mud crab (Scylla paramamosain). Comparative Biochem Physiol Part - C: Toxicol Pharmacol 263:109474. https://doi.org/10.1016/j.cbpc.2022.109474 DOI

Yu B, Wang X, Dong KF, Xiao G, Ma D (2020) Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Mar Pollut Bull 159:111505 DOI

Pourret O, Hursthouse A (2019) It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int J Environ Res Public Health 16(22):4446 DOI PMC

Truchet DM, Negro CL, Buzzi NS, Mora MC, Marcovecchio JE (2023) Assessment of metal contamination in an urbanized estuary (Atlantic Ocean) using crabs as biomonitors: A multiple biomarker approach. Chemosphere 312:137317. https://doi.org/10.1016/j.chemosphere.2022.137317 DOI

Saher NU, Siddiqui AS (2019) Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone. Chemosphere 221:89–98 DOI

Jyoti D, Sinha R, Faggio C (2022) Advances in biological methods for the sequestration of heavy metals from water bodies: a review. Environ Toxicol Pharmacol 94:103927 DOI

Shahjahan M, Taslima K, Rahman MS, Al-Emran M, Alam SI, Faggio C (2022) Effects of heavy metals on fish physiology – A review. Chemosphere 300:134519. https://doi.org/10.1016/j.chemosphere.2022.134519 DOI

Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107. https://doi.org/10.1016/j.ccr.2017.12.010 DOI

Wu C, Hu X, Wang H, Lin Q, Shen C, Lou L (2023) Exploring key physicochemical sediment properties influencing bioleaching of heavy metals. J Hazard Mater 445:130506. https://doi.org/10.1016/j.jhazmat.2022.130506 DOI

Manullang CY, Hutabarat J, Widowati I (2015) Bioaccumulation of Cadmium (CD) by White Shrimp Penaeus Merguiensis at Different Salinity in Kedungmalang Estuary, Jepara (Central Java). Marine Res Indonesia 39(1):31–37. https://doi.org/10.14203/mri.v39i1.84 DOI

Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055 DOI

Beltrame MO, De Marco SG, Marcovecchio JE (2010) Effects of zinc on molting and body weight of the estuarine crab Neohelice granulata (Brachyura: Varunidae). Sci Total Environ 408(3):531–536 DOI

Moral-Muñoz JA, Herrera-Viedma E, Santisteban-Espejo A, Cobo MJ (2020) Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la Informacion 29:1. https://doi.org/10.3145/epi.2020.ene.03 DOI

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res 133:285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI

Rodríguez-Estival J, Morales-Machuca C, Pareja-Carrera J, Ortiz-Santaliestra ME, Mateo R (2019) Food safety risk assessment of metal pollution in crayfish from two historical mining areas: Accounting for bioavailability and cooking extractability. Ecotoxicol Environ Saf 185:109682. https://doi.org/10.1016/j.ecoenv.2019.109682 DOI

Dutton J, Fisher NS (2011) Salinity effects on the bioavailability of aqueous metals for the estuarine killifish Fundulus heteroclitus. Environ Toxicol Chem 30(9):2107–2114 DOI

Brezonik, PL, King, SO, Mach, CE (2020) The influence of water chemistry on trace metal bioavailability and toxicity to aquatic organisms. In Metal ecotoxicology concepts and applications (pp. 1–31). CRC Press. https://doi.org/10.1201/9781003069973-1

de Paiva Magalhães D, da Costa Marques MR, Baptista DF, Buss DF (2015) Metal bioavailability and toxicity in freshwaters. Environ Chem Lett 13(1):69–87 DOI

Pontoni L, La Vecchia C, Boguta P, Sirakov M, D’Aniello E, Fabbricino M, Locascio A (2022) Natural organic matter controls metal speciation and toxicity for marine organisms: A review. Environ Chem Lett 20(1):797–812 DOI

Alonso, Á (2023) Previous stress causes a contrasting response to cadmium toxicity in the aquatic snail Potamopyrgus antipodarum: lethal and behavioral endpoints. Environmental Science and Pollution Research. 1–11. https://doi.org/10.1007/s11356-022-24932-3

Bigalke M, Ulrich A, Rehmus A, Keller A (2017) Accumulation of cadmium and uranium in arable soils in Switzerland. Environ Pollut 221:85–93. https://doi.org/10.1016/j.envpol.2016.11.035 DOI

Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601–602:1591–1605. https://doi.org/10.1016/j.scitotenv.2017.06.030 DOI

Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: A review. Appl Geochem 108:1–16. https://doi.org/10.1016/j.apgeochem.2019.104388 DOI PMC

Azizullah A, Khattak MNK, Richter P, Häder DP (2011) Water pollution in Pakistan and its impact on public health - A review. Environ Int 37(2):479–497. https://doi.org/10.1016/j.envint.2010.10.007 DOI

Mohod CV, Dhote J (2013) Review of heavy metals in drinking water and their effect on human health. International Journal of Innovative Research in Science, Engineering and Technology 2(7):2992–2996

Ogamba EN, Charles EE, Izah SC (2021) Distributions, pollution evaluation and health risk of selected heavy metal in surface water of Taylor creek, Bayelsa State. Nigeria Toxicol Environ Health Sci 13:109–121. https://doi.org/10.1007/s13530-020-00076-0 DOI

Naseem S, Hamza S, Nawaz-ul-Huda S, Bashir E, ul-Haq Q (2014) Geochemistry of Cd in groundwater of Winder, Balochistan and suspected health problems. Environ Earth Sci 71:1683–1690. https://doi.org/10.1007/s12665-013-2572-z DOI

Sun F, Yu G, Han X, Chi Z, Lang Y, Liu C (2023) Risk assessment and binding mechanisms of potentially toxic metals in sediments from different water levels in a coastal wetland. J Environ Sci 129:202–212. https://doi.org/10.1016/j.jes.2022.09.009 DOI

Zhang Y, Han Y, Yang J, Zhu L, Zhong W (2017) Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J Environ Sci 62:31–38. https://doi.org/10.1016/j.jes.2017.08.002 DOI

Haghnazar H, Hudson-Edwards KA, Kumar V, Pourakbar M, Mahdavianpour M, Aghayani E (2021) Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 285:131446. https://doi.org/10.1016/j.chemosphere.2021.131446 DOI

Duodu GO, Goonetilleke A, Ayoko GA (2016) Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ Pollut 219:1077–1091. https://doi.org/10.1016/j.envpol.2016.09.008 DOI

Chu, Q, Li, Y, Wang, X (2023) Bayesian inference of heavy metals exposure in crayfish for assessing human non–carcinogenic health risk. Food Chem Toxicol 113595. https://doi.org/10.1016/j.fct.2022.113595

Srivastav AK, Srivastava S, Srivastav SK, Faggio C, Sekiguchi T, Suzuki N (2021) Response of ultimobranchial and parathyroid glands of the Indian skipper frog, Euphlyctis cyanophlyctis to cadmium toxicity. Iran J Toxicol 13(3):39–44. https://doi.org/10.32598/IJT.13.3.74.8 DOI

Baki MA, Hossain MM, Akter J, Quraishi SB, Haque Shojib MF, Atique Ullah AKM, Khan MF (2018) Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island. Bangladesh Ecotoxicol Environ Safety 159:153–163. https://doi.org/10.1016/j.ecoenv.2018.04.035 DOI

Ngo-Massou VM, Kottè-Mapoko EF, Din N (2022) Heavy metal accumulation in the edible crab Cardisoma armatum (Brachyura: Gecarcinidae) and implications for human health risks. Sci Afr 16:e01248. https://doi.org/10.1016/j.sciaf.2022.e01248 DOI

Metian M, Hédouin L, Eltayeb MM, Lacoue-Labarthe T, Teyssié JL, Mugnier C, Bustamante P, Warnau M (2010) Metal and metalloid bioaccumulation in the Pacific blue shrimp Litopenaeus stylirostris (Stimpson) from New Caledonia: Laboratory and field studies. Mar Pollut Bull 61(7–12):576–584. https://doi.org/10.1016/j.marpolbul.2010.06.035 DOI

Cheung KC, Wong MH (2006) Risk assessment of heavy metal contamination in shrimp farming in Mai Po Nature Reserve. Hong Kong Environ Geochem Health 28:27–36. https://doi.org/10.1007/s10653-005-9008-y DOI

Wang L, Feng J, Wang G, Guan T, Zhu C, Li J, Wang H (2021) Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense. Ecotoxicol Environ Saf 224:112651. https://doi.org/10.1016/j.ecoenv.2021.112651 DOI

Bautista-Covarrubias JC, Valdez-Soto IE, Aguilar-Juárez M, Arreola-Hernández JO, Soto-Jiménez MF, Soto-Rodríguez SA, López-Sánchez JA, Osuna-Martínez CC, Frías-Espericueta MG (2022) Cadmium and copper mixture effects on immunological response and susceptibility to Vibrio harveyi in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 129:145–151. https://doi.org/10.1016/j.fsi.2022.08.054 DOI

Cheng CH, Ma HL, Liu GX, Fan SG, Deng YQ, Jiang JJ, Feng J, Guo ZX (2023) Toxic effects of cadmium exposure on intestinal histology, oxidative stress, microbial community, and transcriptome change in the mud crab (Scylla paramamosain). Chemosphere 326:138464 DOI

Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K (2019) Cadmium-induced oxidative stress, histopathology, and transcriptome changes in the hepatopancreas of freshwater crayfish (Procambarus clarkii). Sci Total Environ 666:944–955. https://doi.org/10.1016/j.scitotenv.2019.02.159 DOI

Bagheri D, Moradi R, Zare M, Sotoudeh E, Hoseinifar SH, Oujifard A, Esmaeili N (2023) Does Dietary Sodium Alginate with Low Molecular Weight Affect Growth, Antioxidant System, and Haemolymph Parameters and Alleviate Cadmium Stress in Whiteleg Shrimp (Litopenaeus vannamei)? Animals 13(11):1805 DOI PMC

Duan Y, Wang Y, Huang J, Li H, Dong H, Zhang J (2021) Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei. Mar Pollut Bull 167:112220 DOI

Qin Q, Qin S, Wang L, Lei W (2012) Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium. Aquat Toxicol 106:140–146. https://doi.org/10.1016/j.aquatox.2011.08.013 DOI

Zhou Y, Jing W, Dahms HU, Hwang JS, Wang L (2017) Oxidative damage, ultrastructural alterations and gene expressions of hemocytes in the freshwater crab Sinopotamon henanense exposed to cadmium. Ecotoxicol Environ Saf 138:130–138. https://doi.org/10.1016/j.ecoenv.2016.12.030 DOI

Zhang Y, Li Z, Kholodkevich S, Sharov A, Chen C, Feng Y, Ren N, Sun K (2020) Effects of cadmium on intestinal histology and microbiota in freshwater crayfish (Procambarus clarkii). Chemosphere 242:125105. https://doi.org/10.1016/j.chemosphere.2019.125105 DOI

Das S, Tseng LC, Chou C, Wang L, Souissi S, Hwang JS (2019) Effects of cadmium exposure on antioxidant enzymes and histological changes in the mud shrimp Austinogebia edulis (Crustacea: Decapoda). Environ Sci Pollut Res 26(8):7752–7762. https://doi.org/10.1007/s11356-018-04113-x DOI

Cheng CH, Ma HL, Deng YQ, Feng J, Jie YK, Guo ZX (2021) Oxidative stress, cell cycle arrest, DNA damage and apoptosis in the mud crab (Scylla paramamosain) induced by cadmium exposure. Chemosphere 263:128277. https://doi.org/10.1016/j.chemosphere.2020.128277 DOI

Lei W, Wang L, Liu D, Xu T, Luo J (2011) Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon yangtsekiense. Chemosphere 84(5):689–694. https://doi.org/10.1016/j.chemosphere.2011.03.023 DOI

Bjerregaard P, Bjørn L, Nørum U, Pedersen KL (2005) Cadmium in the shore crab Carcinus maenas: seasonal variation in cadmium content and uptake and elimination of cadmium after administration via food. Aquat Toxicol 72(1–2):5–15 DOI

Wu JP, Chen HC (2004) Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57(11):1591–1598 DOI

Ardiansyah S, Irawan B, Soegianto A (2012) Effect of cadmium and zinc in different salinity levels on survival and osmoregulation of white shrimp (Litopenaeus vannamei Boone). Mar Freshw Behav Physiol 45(4):291–302 DOI

Brix KV, Gerdes RM, Adams WJ, Grosell M (2006) Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch Environ Contam Toxicol 51:580–583 DOI

Nadukooru N, Yallapragada PR (2015) Carotenoid as a sensitive indicator of sub lethal cadmium toxicity in Penaeus monodon post larvae. Ecotoxicology 24:339–345 DOI

Cheng L, Zhou JL, Cheng J (2018) Bioaccumulation, tissue distribution and joint toxicity of erythromycin and cadmium in Chinese mitten crab (Eriocheir sinensis). Chemosphere 210:267–278 DOI

Cheng C, Ma H, Liu G, Fan S, Guo Z (2022) Mechanism of cadmium exposure induced hepatotoxicity in the mud crab (Scylla paramamosain): activation of oxidative stress and Nrf2 signaling pathway. Antioxidants 11(5):978 DOI PMC

Brouwer M, Hoexum Brouwer T, Grater W, Brown-Peterson N (2003) Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport. Biochem J 374(1):219–228. https://doi.org/10.1042/BJ20030272 DOI PMC

Truchet DM, Buzzi NS, Negro CL, Palavecino CC, Mora MC, Marcovecchio JE (2023) Unraveling the depuration mechanisms of metals in the burrowing crab (Neohelice granulata Dana, 1852): Biochemical biomarkers, metal-rich granules and bioaccumulation patterns. Mar Pollut Bull 196:115638 DOI

Cinti S, Mazzaracchio V, Öztürk G, Moscone D, Arduini F (2018) A lab-on-a-tip approach to make electroanalysis user-friendly and de-centralized: Detection of copper ions in river water. Anal Chim Acta 1029:1–7. https://doi.org/10.1016/j.aca.2018.04.065 DOI

Nędzarek A, Czerniejewski P (2022) Impact of polyaluminum chloride on the bioaccumulation of selected elements in the tissues of invasive spiny-cheek crayfish (Faxonius limosus)–Potential risks to consumers. Sci Total Environ 828:154435. https://doi.org/10.1016/j.scitotenv.2022.154435 DOI

Aliko V, Hajdaraj G, Caci A, Faggio C (2015) Copper induced lysosomal membrane destabilisation in haemolymph cells of Mediterranean Green Crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania). Braz Arch Biol Technol 58(5):750–756 DOI

Uddin MM, Peng G, Huang L (2023) Trophic transfer, bioaccumulation, and potential health risk of trace elements in water and aquatic organisms of Yundang Lagoon at Xiamen in China. Toxin Rev 69(1–2):172–177. https://doi.org/10.1080/15569543.2022.2084420 DOI

Elumalai M, Antunes C, Guilhermino L (2002) Effects of single metals and their mixtures on selected enzymes of carcinus maenas. Water Air Soil Pollut 141:273–280. https://doi.org/10.1023/A:1021352212089 DOI

Lauer MMH, De Oliveira CB, Yano NLI, Bianchini A (2012) Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities. Comparative Biochem Physiol C Toxicol Pharmacol 156(3–4):140–147. https://doi.org/10.1016/j.cbpc.2012.08.001 DOI

Pan L, Liu N, Zhang H, Wang J, Miao J (2011) Effects of heavy metal ions (Cu 2+, Pb 2+ and Cd 2+) on DNA damage of the gills, hemocytes and hepatopancreas of marine crab, Charybdis japonica. J Ocean Univ China 10:177–184 DOI

Capparelli MV, McNamara JC, Grosell MG (2020) Tissue Accumulation and the Effects of Long-Term Dietary Copper Contamination on Osmoregulation in the Mudflat Fiddler Crab Minuca rapax (Crustacea, Ocypodidae). Bull Environ Contam Toxicol 104(6):755–762. https://doi.org/10.1007/s00128-020-02872-3 DOI

Feng W, Su S, Song C, Yu F, Zhou J, Li J, Jia R, Xu P, Tang Y (2022) Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab (Eriocheir sinensis). Antioxidants 11(10):2029. https://doi.org/10.3390/antiox11102029 DOI PMC

Gunderson MP, Boyd HM, Kelly CI, Lete IR, McLaughlin QR (2021) Modulation of endogenous antioxidants by zinc and copper in signal crayfish (Pacifastacus leniusculus). Chemosphere 275:129982. https://doi.org/10.1016/j.chemosphere.2021.129982 DOI PMC

Guo H, Li K, Wang W, Wang C, Shen Y (2017) Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei. Biol Trace Elem Res 179(2):318–326. https://doi.org/10.1007/s12011-017-0974-6 DOI

Guo H, Miao YT, Xian JA, Qian K, Wang AL (2015) Expression profile of antioxidant enzymes in hemocytes from freshwater prawn Macrobrachium rosenbergii exposed to an elevated level of copper. Bull Environ Contam Toxicol 95:447–451. https://doi.org/10.1007/s00128-015-1618-1 DOI

Yang L, He Z, Li X, Jiang Z, Xuan F, Tang B, Bian X (2022) Behavior and toxicity assessment of copper nanoparticles in aquatic environment: A case study on red swamp crayfish. J Environ Manage 313:114986. https://doi.org/10.1016/j.jenvman.2022.114986 DOI

Zhao D, Zhang X, Li X, Ru S, Wang Y, Yin J, Liu D (2019) Oxidative damage induced by copper in testis of the red swamp crayfish Procambarus clarkii and its underlying mechanisms. Aquat Toxicol 207:120–131. https://doi.org/10.1016/j.aquatox.2018.12.006 DOI

Zeidi A, Sayadi MH, Rezaei MR, Banaee M, Gholamhosseini A, Pastorino P, Multisanti CR, Faggio C (2023) Single and combined effects of CuSO4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacus leptodactylus. Chemosphere 345:140478. https://doi.org/10.1016/j.chemosphere.2023.140478 DOI

Lee R, Kim GB, Maruya KA, Steinert SA, Oshima Y (2000) DNA strand breaks (comet assay) and embryo development effects in grass shrimp (Palaemonetes pugio) embryos after exposure to genotoxicants. Mar Environ Res 66(1):1–14. https://doi.org/10.1016/S0141-1136(00)00110-0 DOI

Vardhanan YS, Radhakrishnan T (2002) Acute toxicity evaluation of copper, arsenic and HCH to paddy field crab, Paratelphusa hydrodromus (Herb.). J Environ Biol 23(4):387–392

Bao Yuenan J, Xing C, Shiyu F, Hongbo K, Li JX, (2020) Acute and sub-chronic effects of copper on survival respiratory metabolism and metal accumulation in Cambaroides dauricus Abstract Scientific Reports 10(1). https://doi.org/10.1038/s41598-020-73940-1

Leung J, Witt JDS, Norwood W, Dixon DG (2016) Implications of Cu and Ni toxicity in two members of the Hyalella azteca cryptic species complex: Mortality, growth, and bioaccumulation parameters. Environ Toxicol Chem 35(11):2817–2826. https://doi.org/10.1002/etc.3457 DOI

Botté, A, Seguin, C, Nahrgang, J, Zaidi, M, Guery, J, Leignel, V (2022) Lead in the marine environment: concentrations and effects on invertebrates. Ecotoxicol 1–14. https://doi.org/10.1007/s10646-021-02504-4

Lytle DA, Formal C, Doré E, Muhlen C, Harmon S, Williams D, Triantafyllidou S, Pham M (2020) Synthesis and characterization of stable lead (II) orthophosphate nanoparticle suspensions. J Environ Sci Health - Part A Toxic/Hazardous Substances Environ Eng 55(13):1504–1512. https://doi.org/10.1080/10934529.2020.1810498 DOI

Izah SC, Chakrabarty N, Srivastav AL (2016) A review on heavy metal concentration in potable water sources in Nigeria: Human health effects and mitigating measures. Exposure Health 8:285–304. https://doi.org/10.1007/s12403-016-0195-9 DOI

Orihuela-García MA, Bolado-Penagos M, Sala I, Tovar-Sánchez A, García CM, Bruno M, Echevarría F, Laiz I (2023) Trace metals distribution between the surface waters of the Gulf of Cadiz and the Alboran Sea. Sci Total Environ 858:159662. https://doi.org/10.1016/j.scitotenv.2022.159662 DOI

Lambiase S, Ariano A, Serpe FP, Scivicco M, Velotto S, Esposito M, Severino L (2021) Polycyclic aromatic hydrocarbons (PAHs), arsenic, chromium and lead in warty crab (Eriphia verrucosa): occurrence and risk assessment. Environ Sci Pollut Res 28:35305–35315. https://doi.org/10.1007/s11356-021-14824-3 DOI

Nascimento JR, Bidone ED, Rolão-Araripe D, Keunecke KA, Sabadini-Santos E (2016) Trace metal distribution in white shrimp (Litopenaeus schmitti) tissues from a Brazilian coastal area. Environ Earth Sci 75:990. https://doi.org/10.1007/s12665-016-5798-8 DOI

Wu YS, Huang SL, Chung HC, Nan FH (2017) Bioaccumulation of lead and non-specific immune responses in white shrimp (Litopenaeus vannamei) to Pb exposure. Fish Shellfish Immunol 62:116–123. https://doi.org/10.1016/j.fsi.2017.01.011 DOI

Frías-Espericueta MG, Bautista-Covarrubias JC, Osuna-Martínez CC, Delgado-Alvarez C, Bojórquez C, Aguilar-Juárez M, Roos-Muñoz S, Osuna-López I, Páez-Osuna F (2022) Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. Aquat Toxicol 242:106024. https://doi.org/10.1016/j.aquatox.2021.106024 DOI

Salama WM, Lotfy MM, Mona MM (2022) Depuration effect on the total hemocytes count and heavy metals concentration in freshwater crayfish, Procambarus clarkii. Egypt J Aquat Res 48(3):257–263. https://doi.org/10.1016/j.ejar.2022.04.003 DOI

Allert AL, Fairchild JF, DiStefano RJ, Schmitt CJ, Brumbaugh WG, Besser JM (2009) Ecological effects of lead mining on Ozark streams: in-situ toxicity to woodland crayfish (Orconectes hylas). Ecotoxicol Environ Saf 72(4):1207–1219 DOI

Li Y, Zhou X, Guo W, Fu Y, Ruan G, Fang L, Wang Q (2023) Effects of lead contamination on histology, antioxidant and intestinal microbiota responses in freshwater crayfish. Procambarus Clarkii Aquatic Toxicol 265:106768 DOI

Gholamhosseini A, Banaee M, Zeidi A, Roberta Multisanti C, Faggio C (2024) Individual and combined impact of microplastics and lead acetate on the freshwater shrimp (Caridina fossarum): biochemical effects and physiological responses. Journal of Contaminant Hydrology 104325. https://doi.org/10.1016/j.jconhyd.2024.104325

Amel Jebara A, Lo Turco V, Faggio C, Licata P, Nava V, Potorti AG, Crupi R, Mansour HB, Di Bella G (2021) Monitoring of environmental mercury occurrence in Tunisian coastal areas. Int J Environ Res Public Health 18(10):5202. https://doi.org/10.3390/ijerph18105202 DOI PMC

Dhara K, Saha S, Panigrahi AK, Saha NC, Faggio C (2022) Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the Freshwater Snail. Bellamya Bengalensis Comparative Biochem Physiol, Part C 251:109195. https://doi.org/10.1016/j.cbpc.2021.109195 DOI

Ibrahim ATA, Banaee M, Sureda A (2019) Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus. Comparative Biochem Physiol Part - C: Toxicol Pharmacol 225:108583. https://doi.org/10.1016/j.cbpc.2019.108583 DOI

Ma M, Du H, Wang D (2019) Mercury methylation by anaerobic microorganisms: A review. Crit Rev Environ Sci Technol 49:1893–1936. https://doi.org/10.1080/10643389.2019.1594517 DOI

Baptista-Salazar C, Richard JH, Horf M, Rejc M, Gosar M, Biester H (2017) Grain-size dependence of mercury speciation in river suspended matter, sediments and soils in a mercury mining area at varying hydrological conditions. Appl Geochem 81:132–142. https://doi.org/10.1016/j.apgeochem.2017.04.006 DOI

Roos-Muñoz S, Abad-Rosales SM, Aguilar-Juárez M, Frías-Espericueta MG, Voltolina D (2019) Acute Toxicity of Mercury and Nervous Tissue Damage in Postlarvae and Juveniles of Litopenaeus vannamei. Thalassas 35:57–63. https://doi.org/10.1007/s41208-018-0085-y DOI

Zhang H, Pan L, Miao J, Xu C (2009) Effects of mercuric chloride on antioxidant system and DNA integrity of the crab Charybdis japonica. J Ocean Univ China 8:416–424. https://doi.org/10.1007/s11802-009-0416-y DOI

Zhang L, Zhou Y, Song Z, Liang H, Zhong S, Yu Y, Liu T, Sha H, He L, Gan J (2022) Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg. Antioxidants 11(10):1944 DOI PMC

Tollefsen KE, Song Y, Høgåsen T, Øverjordet IB, Altin D, Hansen BH (2017) Mortality and transcriptional effects of inorganic mercury in the marine copepod Calanus finmarchicus. J Toxicol Environ Health A 80(16–18):845–861 DOI

Zhao Y, Wang X, Qin Y, Zheng B (2010) Mercury (Hg2+) effect on enzyme activities and hepatopancreas histostructures of juvenile Chinese mitten crab Eriocheir sinensis. Chin J Oceanol Limnol 28(3):427–434. https://doi.org/10.1007/s00343-010-9030-2 DOI

Vijayakumar S, Vaseeharan B, Sudhakaran R, Jeyakandan J, Ramasamy P, Sonawane A, Padhi A, Velusamy P, Anbu P, Faggio C (2019) Bioinspired zinc oxide nanoparticles using Lycopersicon esculentum for antimicrobial and anticancer applications. J Cluster Sci 30:1465–1479. https://doi.org/10.1007/s10876-019-01590-z DOI

Kong DH, Ji YX, Zhang BY, Li KC, Liao ZY, Wang H, Zhou JX, Wang QJ (2024) Effects of hydroxy methionine zinc on growth performance, immune response, antioxidant capacity, and intestinal microbiota of red claw crayfish (Procambarus clarkii). Fish Shellfish Immunol 144:109231 DOI

Zhang Y, Han Y, Yang J, Zhu L, Zhong W (2017) Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J Environ Sci (China) 62:31–38. https://doi.org/10.1016/j.jes.2017.08.002 DOI

Pagano M, Porcino C, Briglia M, Fiorino E, Vazzana M, Silvestro S, Faggio C (2017) The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis. Int J Environ Res 11(2):207–216. https://doi.org/10.1007/s41742-017-0020-8 DOI

Dadar M, Peyghan R, Memari HR (2014) Evaluation of the Bioaccumulation of Heavy Metals in White Shrimp (Litopenaeus vannamei) Along the Persian Gulf Coast. Bull Environ Contam Toxicol 93:339–343. https://doi.org/10.1007/s00128-014-1334-2 DOI

Fakhri Y, Mohseni-Bandpei A, Oliveri Conti G, Ferrante M, Cristaldi A, Jeihooni AK, Karimi Dehkordi M, Alinejad A, Rasoulzadeh H, Mohseni SM, Sarkhosh M, Keramati H, Moradi B, Amanidaz N, Baninameh Z (2018) Systematic review and health risk assessment of arsenic and lead in the fished shrimps from the Persian gulf. Food Chem Toxicol 113:278–286. https://doi.org/10.1016/j.fct.2018.01.046 DOI

Barbieri E, Doi SA (2011) The effects of different temperature and salinity levels on the acute toxicity of zinc in the Pink Shrimp (Farfantepenaeuspaulensis). Marine Freshwater Behav Physiol 44(4):251–263. https://doi.org/10.1080/10236244.2011.617606 DOI

Wu JP, Chen HC (2005) Effects of cadmium and zinc on the growth, food consumption, and nutritional conditions of the white shrimp, Litopenaeus vannamei (boone). Bull Environ Contam Toxicol 74:234–241. https://doi.org/10.1007/s00128-004-0575-x DOI

Keteles KA, Fleeger JW (2001) The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp Palaemonetes pugio holthius. Marine Pollut Bull 42(12):1397–1402. https://doi.org/10.1016/S0025-326X(01)00172-2 DOI

Wu JP, Chen HC, Huang DJ (2008) Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium and zinc in the white shrimp Litopenaeus vannamei. Chemosphere 73(7):1019–1026. https://doi.org/10.1016/j.chemosphere.2008.08.019 DOI

Ribeiro F, Van Gestel CAM, Pavlaki MD, Azevedo S, Soares AMVM, Loureiro S (2017) Bioaccumulation of silver in Daphnia magna: Waterborne and dietary exposure to nanoparticles and dissolved silver. Sci Total Environ 64(1):26–35. https://doi.org/10.1016/j.scitotenv.2016.08.204 DOI

Flegal AR, Brown CL, Squire S, Ross JRM, Scelfo GM, Hibdon S (2007) Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay. Environ Res 105(1):34–52. https://doi.org/10.1016/j.envres.2007.05.006 DOI

Maldonado-Muñiz M, Luna C, Mendoza-Reséndez R, Barriga-Castro ED, Soto-Rodriguez S, Ricque-Marie D, Cruz-Suarez LE (2020) Silver nanoparticles against acute hepatopancreatic necrosis disease (AHPND) in shrimp and their depuration kinetics. J Appl Phycol 32:2431–2445. https://doi.org/10.1007/s10811-019-01948-w DOI

Juarez-Moreno K, Mejía-Ruiz CH, Díaz F, Reyna-Verdugo H, Re AD, Vazquez-Felix EF, Sánchez-Castrejón E, Mota-Morales JD, Pestryakov A, Bogdanchikova N (2017) Effect of silver nanoparticles on the metabolic rate, hematological response, and survival of juvenile white shrimp Litopenaeus vannamei. Chemosphere 169:716–724 DOI

Grosell M, Brauner CJ, Kelly SP, McGeer JC, Bianchini A, Wood CM (2002) Physiological responses to acute silver exposure in the freshwater crayfish (Cambarus diogenes diogenes) - A model invertebrate? Environ Toxicol Chem 21(2):369–374. https://doi.org/10.1002/etc.5620210220 DOI

Walters CR, Cheng P, Pool E, Somerset V (2016) Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape River crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNP). J Toxicol Environ Health - Part A: Curr Issues 79(2):61–70. https://doi.org/10.1080/15287394.2015.1106357 DOI

Pyle GG, Swanson SM, Lehmkuhl DM (2002) The influence of water hardness, pH, and suspended solids on nickel toxicity to larval fathead minnows (Pimephales promelas). Water Air Soil Pollut 133:215–226. https://doi.org/10.1023/A:1012973728628 DOI

Peters A, Nys C, Leverett D, Wilson I, Van Sprang P, Merrington G, Middleton E, Garman E, Schlekat C (2023) Updating the Chronic Freshwater Ecotoxicity Database and Biotic Ligand Model for Nickel for Regulatory Applications in Europe. Environ Toxicol Chem 42(3):566–580 DOI

Hunt JW, Anderson BS, Phillips BM, Tjeerdema RS, Puckett HM, Stephenson M, Tucker DW, Watson D (2002) Acute and chronic toxicity of nickel to marine organisms: Implications for water quality criteria. Environ Toxicol Chem 21(11):2423–2430. https://doi.org/10.1002/etc.5620211122 DOI

Asadpour YA, Nejatkhah Manavi P, Baniamam M (2013) Evaluating the Bioaccumulation of Nickel and Vanadium and their effects on the Growth of Artemia urmiana and A. franciscana. Iran J Fish Sci 12(1):183–192

Dehghani M, Sharifian S, Taherizadeh MR, Nabavi M (2021) Tracing the heavy metals zinc, lead and nickel in banana shrimp (Penaeus merguiensis) from the Persian Gulf and human health risk assessment. Environ Sci Pollut Res 28:38817–38828. https://doi.org/10.1007/s11356-021-13063-w DOI

Blewett TA, Glover CN, Fehsenfeld S, Lawrence MJ, Niyogi S, Goss GG, Wood CM (2015) Making sense of nickel accumulation and sub-lethal toxic effects in saline waters: Fate and effects of nickel in the green crab Carcinus maenas. Aquatic Toxicol 164:23–33. https://doi.org/10.1016/j.aquatox.2015.04.010 DOI

Naboka A, Marenkov OM, Kovalchuk J, Shapovalenko Z, Nesterenko OS, Dzhobolda B (2018) Parameters of the Histological Adaptation of Marmorkrebs Procambarus virginalis (Lyko, 2017) (Decapoda, Cambaridae) to Manganese, Nickel and Lead Ions Pollution. Int Lett Nat Sci 70:24–33. https://doi.org/10.56431/p-tzw2qo DOI

Mohammed EH, Wang G, Jiang J (2010) The effects of nickel on the reproductive ability of three different marine copepods. Ecotoxicology 19:911–916. https://doi.org/10.1007/s10646-010-0471-6 DOI

Zhou C, Carotenuto Y, Vitiello V, Wu C, Zhang J, Buttino I (2018) De novo transcriptome assembly and differential gene expression analysis of the calanoid copepod Acartia tonsa exposed to nickel nanoparticles. Chemosphere 209:163–172. https://doi.org/10.1016/j.chemosphere.2018.06.096 DOI

Vandenbrouck T, Soetaert A, van der Ven K, Blust R, De Coen W (2009) Nickel and binary metal mixture responses in Daphnia magna: Molecular fingerprints and (sub)organismal effects. Aquat Toxicol 92(1):18–29. https://doi.org/10.1016/j.aquatox.2008.12.012 DOI

Bagheri S, Gholamhosseini A, Banaee M (2023) Investigation of Different Nutritional Effects of Dietary Chromium in Fish: A Literature Review. Biol Trace Elem Res 201(5):2546–2554. https://doi.org/10.1007/s12011-022-03326-z DOI

Kungolos, A, Hadjispirou, S, Petala, M, Tsiridis, V, Samaras, P, Sakellaropoulos, GP (2003) Toxic properties of cyanide, chromium and organotin compounds and their interactions on Daphnia magna. Proceedings of the International Conference on Environmental Science and Technology, 515–522

Thiagarajan V, Seenivasan R, Jenkins D, Chandrasekaran N, Mukherjee A (2020) Combined effects of nano-TiO2 and hexavalent chromium towards marine crustacean Artemia salina. Aquat Toxicol 225:105541. https://doi.org/10.1016/j.aquatox.2020.105541 DOI

Shi B, Tao X, Betancor MB, Lu J, Tocher DR, Meng F, Figueiredo-Silva C, Zhou Q, Jiao L, Jin M (2021) Dietary chromium modulates glucose homeostasis and induces oxidative stress in Pacific white shrimp (Litopenaeus vannamei). Aquat Toxicol 240:105967. https://doi.org/10.1016/j.aquatox.2021.105967 DOI

Gagneten AM, Imhof A (2009) Chromium (Cr) accumulation in the freshwater crab, Zilchiopsis collastinensis. J Environ Biol 30(3):345–348

Sayyad NR, Khan AK, Ansari NT, Hashmi S, Shaikh MAJ (2007) Heavy metal concentrations in different body part of crab, Barytelphusa guerini from Godavari River. J Ind Pollut Control 23(2):363–368

Sridevi B, Reddy SLN (2000) Effect of trivalent and hexavalent chromium on carbohydrate metabolism of a freshwater field crab Barytelphusa guerini. Environ Monitoring Assess 61:293–302. https://doi.org/10.1023/A:1006198127933 DOI

Harper-Arabie RM, Wirth EF, Fulton MH, Scott GI, Ross PE (2004) Protective effects of allozyme genotype during chemical exposure in the grass shrimp Palaemonetes pugio. Aquatic Toxicol 70(1):41–54. https://doi.org/10.1016/j.aquatox.2004.07.004 DOI

Russell A, MacFarlane GR, Nowak B, Moltschaniwskyj NA, Taylor MD (2019) Lethal and sub-lethal effects of aluminium on a juvenile penaeid shrimp. Thalassas: An Int J Marine Sci 35:359–368 DOI

Momodu MA, Anyakora CA (2010) Heavy metal contamination of ground water: the Surulere case study. Res J Environ Earth Sci 2(1):39–43

Rivera-Ingraham GA, Andrade M, Vigouroux R, Solé M, Brokordt K, Lignot JH, Freitas R (2021) Are we neglecting earth while conquering space? Effects of aluminized solid rocket fuel combustion on the physiology of a tropical freshwater invertebrate. Chemosphere 268:128820. https://doi.org/10.1016/j.chemosphere.2020.128820 DOI

Suwa K, Takahashi C, Horie Y (2022) Acute toxicity assays using Danio rerio and Daphnia magna to assess hot-spring drainage in the Shibukuro and Tama Rivers (Akita, Japan). Ecotoxicology 31(2):187–193. https://doi.org/10.1007/s10646-021-02514-2 DOI

Zhang X, Shen M, Wang C, Gao M, Wang L, Jin Z, Xia X (2023) Impact of aluminum exposure on oxidative stress, intestinal changes and immune responses in red swamp crayfish (Procambarus clarkii). Sci Total Environ 855:158902. https://doi.org/10.1016/j.scitotenv.2022.158902 DOI

Saha S, Ray S (2014) Sublethal effect of arsenic on oxidative stress and antioxidant status in Scylla serrata. Clean - Soil, Air, Water 42(9):1216–1222. https://doi.org/10.1002/clen.201300294 DOI

Liao ZH, Chuang HC, Huang HT, Wang PH, Chen BY, Lee PT, Wu YS, Nan FH (2022) Bioaccumulation of arsenic and immunotoxic effect in white shrimp (Penaeus vannamei) exposed to trivalent arsenic. Fish Shellfish Immunol 122:376–385. https://doi.org/10.1016/j.fsi.2022.02.029 DOI

Lobato RO, Nunes SM, Wasielesky W, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J (2013) The role of lipoic acid in the protection against of metallic pollutant effects in the shrimp Litopenaeus vannamei (Crustacea, Decapoda). Comparative Biochem Physiol A Molecular Integrative Physiol 165(4):491–497. https://doi.org/10.1016/j.cbpa.2013.03.015 DOI

Davolos D, Chimenti C, Ronci L, Setini A, Iannilli V, Pietrangeli B, De Matthaeis E (2015) An integrated study on Gammarus elvirae (Crustacea, Amphipoda): perspectives for toxicology of arsenic-contaminated freshwater. Environ Sci Pollut Res 22(20):15563–15570. https://doi.org/10.1007/s11356-015-4727-9 DOI

Ronci L, De Matthaeis E, Chimenti C, Davolos D (2017) Arsenic-contaminated freshwater: assessing arsenate and arsenite toxicity and low-dose genotoxicity in Gammarus elvirae (Crustacea; Amphipoda). Ecotoxicology 26:581–588. https://doi.org/10.1007/s10646-017-1791-6 DOI

Brix KV, Cardwell RD, Adams WJ (2003) Chronic toxicity of arsenic to the Great Salt Lake brine shrimp Artemia franciscana. Ecotoxicol Environ Safety 54(2):169–175. https://doi.org/10.1016/S0147-6513(02)00054-4 DOI

Azizur Rahman M, Hasegawa H, Peter Lim R (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116:118–135. https://doi.org/10.1016/j.envres.2012.03.014 DOI

Glabonjat RA, Raber G, Holm HC, Van Mooy BAS, Francesconi KA (2021) Arsenolipids in Plankton from High- And Low-Nutrient Oceanic Waters along a Transect in the North Atlantic. Environ Sci Technol 55(8):5515–5524. https://doi.org/10.1021/acs.est.0c06901 DOI

Jeong H, Yoon C, Lee JS, Byeon E (2023) Differential susceptibility to arsenic in glutathione S-transferase omega 2 (GST-O2)-targeted freshwater water flea Daphnia magna mutants. Aquat Toxicol 254:106364. https://doi.org/10.1016/j.aquatox.2022.106364 DOI

Luvonga C, Rimmer CA, Yu LL, Lee SB (2021) Determination of total arsenic and hydrophilic arsenic species in seafood. J Food Compos Anal 96:103729. https://doi.org/10.1016/j.jfca.2020.103729 DOI

Sun J, Quicksall AN, Chillrud SN, Mailloux BJ, Bostick BC (2016) Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere 129:202–212. https://doi.org/10.1016/j.chemosphere.2016.02.117 DOI

Zhang, W, Miao, AJ, Wang, NX, Li, C, Sha, J, Jia, J, Alessi, DS, Yan, B, Ok, YS (2022) Arsenic bioaccumulation and biotransformation in aquatic organisms. In Environment International. 107221. https://doi.org/10.1016/j.envint.2022.107221

Nguyen DA, Nguyen DV, Jeong G, Asghar N, Jang A (2023) Critical evaluation of hybrid metal–organic framework composites for efficient treatment of arsenic–contaminated solutions by adsorption and membrane–separation process. Chem Eng J 461:141789. https://doi.org/10.1016/j.cej.2023.141789 DOI

Shahid SU, Abbasi NA, Tahir A, Ahmad S, Ahmad SR (2023) Health risk assessment and geospatial analysis of arsenic contamination in shallow aquifer along Ravi River, Lahore Pakistan. Environ Sci Pollut Res 30(2):4866–4880. https://doi.org/10.1007/s11356-022-22458-2 DOI

Visviki I, Judge ML (2020) Chronic arsenate exposure affects amphipod size distribution and reproduction. PeerJ 8:e8645. https://doi.org/10.7717/peerj.8645 DOI PMC

Cordeiro L, Müller L, Gelesky MA, Wasielesky W, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J (2016) Evaluation of coexposure to inorganic arsenic and titanium dioxide nanoparticles in the marine shrimp Litopenaeus vannamei. Environ Sci Pollut Res 23:1214–1223. https://doi.org/10.1007/s11356-015-5200-5 DOI

Zhang Z, Wang X, Cheng S, Sun L, Son YO, Yao H, Li W, Budhraja A, Li L, Shelton BJ, Tucker T (2011) Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/β-catenin pathway in human colorectal adenocarcinoma DLD1 cells. Toxicol Appl Pharmacol 256(2):114–121 DOI

Yamanaka K, Kato K, Mizoi M, An Y, Takabayashi F, Nakano M, Hoshino M, Okada S (2004) The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis. Toxicol Appl Pharmacol 198(3):385–393 DOI

Bao C, Cai Q, Ying X, Zhu Y, Ding Y, Murk TA (2021) Health risk assessment of arsenic and some heavy metals in the edible crab (Portunus trituberculatus) collected from Hangzhou Bay. China Marine Pollution Bulletin 173:113007 DOI

Andersen JL, Depledge MH (1994) Arsenic accumulation in the shore crab Carcinus maenas: the influence of nutritional state, sex and exposure concentration. Mar Biol 118:285–292 DOI

Yang JL, Chen HC (2003) Effects of gallium on common carp (Cyprinus carpio): Acute test, serum biochemistry, and erythrocyte morphology. Chemosphere 53(8):877–882. https://doi.org/10.1016/S0045-6535(03)00657-X DOI

Flora, SJS, Dwivedi, N (2012) A toxicochemical review of gallium arsenide. Defence Sci J 62(2). https://doi.org/10.14429/dsj.62.1014

Clausén M, Öhman LO, Axe K, Persson P (2003) Spectroscopic studies of aluminum and gallium complexes with oxalate and malonate in aqueous solution. J Mol Struct 648(3):225–235. https://doi.org/10.1016/S0022-2860(03)00026-7 DOI

Clausén M, Öhman LO, Persson P (2005) Spectroscopic studies of aqueous gallium(III) and aluminum(III) citrate complexes. J Inorg Biochem 99(3):716–726. https://doi.org/10.1016/j.jinorgbio.2004.12.007 DOI

Salminen, R (Chief-editor), Batista, M, Bidovec, M, Demetriades, A, De Vivo, B, De Vos, W, Duris, M, Gilucis, A, Gre- gorauskiene, V, Halamic, J, Heitzmann, P, Lima, A, Jordan, G, Klaver, G, Klein, P, Lis, J, Locutura, J, Marsina, K, Mazreku, A, … Tarvainen, T (2005) FOREGS Geochemical atlas of Europe. In Geological Survey of Finland. 1–21

Yu, HS, Liao, WT (2011) Gallium: Environmental Pollution and Health Effects. In Encyclopedia of Environmental Health. 153–157. https://doi.org/10.1016/B978-0-444-52272-6.00474-8

Collery P, Keppler B, Madoulet C, Desoize B (2002) Gallium in cancer treatment. Critical Rev Oncol/Hematol 42(3):283–296. https://doi.org/10.1016/S1040-8428(01)00225-6 DOI

Betoulle S, Etienne JC, Vernet G (2002) Acute immunotoxicity of gallium to carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 68:817–823. https://doi.org/10.1007/s00128-002-0028-3 DOI

Yang JL, Chen LH (2018) Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan. J Elementol 23:1. https://doi.org/10.5601/jelem.2017.22.3.1470 DOI

Yang JL (2014) Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper (II) on freshwater swamp shrimp (Macrobrachium nipponense). Biol Res 47(1):1–4. https://doi.org/10.1186/0717-6287-47-13 DOI

Zeng C, Gonzalez-Alvarez A, Orenstein E, Field JA, Shadman F, Sierra-Alvarez R (2017) Ecotoxicity assessment of ionic As(III), As(V), In(III) and Ga(III) species potentially released from novel III-V semiconductor materials. Ecotoxicol Environ Saf 140:30–36. https://doi.org/10.1016/j.ecoenv.2017.02.029 DOI

Onikura N, Nakamura A, Kishi K (2005) Acute toxicity of gallium and effects of salinity on gallium toxicity to brackish and marine organisms. Bull Environ Contam Toxicol 75(2):356–360. https://doi.org/10.1007/s00128-005-0761-5 DOI

van Dam JW, Trenfield MA, Streten C, Harford AJ, Parry D, van Dam RA (2018) Assessing chronic toxicity of aluminium, gallium and molybdenum in tropical marine waters using a novel bioassay for larvae of the hermit crab Coenobita variabilis. Ecotoxicol Environ Saf 165:349–356. https://doi.org/10.1016/j.ecoenv.2018.09.025 DOI

Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28(1):57–102. https://doi.org/10.1016/j.oregeorev.2003.06.002 DOI

Fowler, B. A., & Maples-Reynolds, N. (2015). Indium. In Handbook on the Toxicology of Metals (pp. 845–853). Academic Press.

Onikura, N, Nakamura, A, Kishi, K (2008) Acute toxicity of thallium and indium toward brackish-water and marine organisms. J Faculty Agriculture, Kyushu Univ 467–469. https://doi.org/10.5109/12859

Blaise C, Gagné F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol: An Int J 23(5):591–598 DOI

Onikura N, Nakamura A, Kishi K (2008) Acute Toxicity of Thallium and Indium toward Brackish-Water and Marine Organisms. J Faculty of Agriculture, Kyushu Univ 53(2):467–469 DOI

Baudrimont M, Andrei J, Mornet S, Gonzalez P, Mesmer-Dudons N, Gourves PY, Jaffal A, Dedourge-Geffard O, Geffard A, Geffard O, Garric J, Feurtet-Mazel A (2018) Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm. Environ Sci Pollut Res 25:11181–11191. https://doi.org/10.1007/s11356-017-8400-3 DOI

Makama S, Piella J, Undas A, Dimmers WJ, Peters R, Puntes VF, van den Brink NW (2016) Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Environ Pollut 218:870–878. https://doi.org/10.1016/j.envpol.2016.08.016 DOI

Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. In Environmental Pollution 157(4):1127–1133. https://doi.org/10.1016/j.envpol.2008.10.002 DOI

Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076. https://doi.org/10.1002/smll.200900466 DOI

Panessa-Warren BJ, Warren JB, Maye MM, Van Der Lelie D, Gang O, Wong SS, Ghebrehiwet B, Tortora GT, Misewich JA (2008) Human epithelial cell processing of carbon and gold nanoparticles. Int J Nanotechnol 5(1):55–91. https://doi.org/10.1504/IJNT.2008.016549 DOI

Kang, JS, Yum, YN, Kim, JH, Song, H, Jeong, J, Lim, YT, Chung, BH, Park, SN (2009) Induction of DNA damage in L5178Y cells treated with gold nanoparticle. Biomole Therapeutics 55376538. https://doi.org/10.4062/biomolther.2009.17.1.92

Park S, Woodhall J, Ma G, Veinot JGC, Boxall ABA (2015) Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates? Environ Toxicol Chem 34(4):850–859. https://doi.org/10.1002/etc.2868 DOI

Wray AT, Klaine SJ (2015) Modeling the influence of physicochemical properties on gold nanoparticle uptake and elimination by Daphnia magna. Environ Toxicol Chem 34(4):860–872. https://doi.org/10.1002/etc.2881 DOI

Xu S, Lin C, Qiu P, Song Y, Yang W, Xu G, Feng X, Yang Q, Yang X, Niu A (2015) Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen. China Marine Pollution Bulletin 100(1):562–566. https://doi.org/10.1016/j.marpolbul.2015.08.031 DOI

Norwood WP, Borgmann U, Dixon DG (2007) Chronic toxicity of arsenic, cobalt, chromium and manganese to Hyalella azteca in relation to exposure and bioaccumulation. Environ Pollut 147(1):262–272. https://doi.org/10.1016/j.envpol.2006.07.017 DOI

Zeeshan M, Murugadas A, Ghaskadbi S, Ramaswamy BR, Akbarsha MA (2017) Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. Environ Pollut 224:54–69. https://doi.org/10.1016/j.envpol.2016.12.042 DOI

Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 387:43–56. https://doi.org/10.1016/j.tox.2017.05.015 DOI

Karthikeyan P, Marigoudar SR, Nagarjuna A, Sharma KV (2019) Toxicity assessment of cobalt and selenium on marine diatoms and copepods. Environ Chem Ecotoxicol 1:36–42. https://doi.org/10.1016/j.enceco.2019.06.001 DOI

Chen C, Xu C, Qian D, Yu Q, Huang M, Zhou L, Qin JG, Chen L, Li E (2020) Growth and health status of Pacific white shrimp, Litopenaeus vannamei, exposed to chronic water born cobalt. Fish Shellfish Immunol 100:137–145. https://doi.org/10.1016/j.fsi.2020.03.011 DOI

Leone, FA, Fabri, LM, Costa, MI, Moraes, CM, Garcon, DP, McNamara, JC (2022) Differential effects of cobalt ions in vitro on gill (Na+, K+)-ATPase kinetics in the blue crab Callinectes danae (Decapoda, Brachyura). BioRxiv, 2011–2022

Stalin, A, Suganthi, P, Mathivani, S, Broos, KV, Gokula, V, HE, SM, ... Venu-Babu, P (2019) Effect of cobalt-60 gamma radiation on reproductive disturbance in freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Toxicol Rep 6, 1143-1147 https://doi.org/10.1016/j.toxrep.2019.10.021

Stalin A, Broos KV, Bukhari AS, Mohamed HS, Singhal RK, Venu-Babu P (2013) Morphological and histological studies on freshwater prawn Macrobrachium rosenbergii (de man) irradiated with 60Co gamma radiation. Aquat Toxicol 144:36–49 DOI

Stalin A, Suganthi P, Mathivani S, Broos KV, Gokula V, Sadiq Bukhari A, Syed Mohamed HE, Singhal RK, Venu-Babu P (2019) Effect of cobalt-60 gamma radiation on total hemocyte content and biochemical parameters in Macrobrachium rosenbergii (De Man, 1879). Int J Radiat Biol 95(6):753–763 DOI

Arumugam S, Palani S, Subramanian M, Varadharajan G (2021) Ultrastructural alteration in Gill and Hepatopancrease of freshwater prawn Macrobrachium rosenbergii exposed to 60Co gamma radiation. Environ Sci Pollut Res 28(9):11348–11356 DOI

Guy S, Gaw S, Beaven S, Pearson AJ (2022) Dose assessment for polonium-210 (Po-210) in New Zealand shellfish. J Environ Radioact 242:106788. https://doi.org/10.1016/j.jenvrad.2021.106788 DOI

Cherry RD, Heyraud M (1981) Polonium-210 content of marine shrimp: variation with biological and environmental factors. Mar Biol 65:165–175 DOI

Carvalho FP (2011) Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains. J Environ Radioact 102(5):462–472 DOI

Stewart GM, Fisher NS (2003) Bioaccumulation of polonium-210 in marine copepods. Limnol Oceanogr 48(5):2011–2019 DOI

Alam L, Mohamed CAR (2011) A mini review on bioaccumulation of 210Po by marine organisms. Int Food Res J 18:1–10

Connan O, Germain P, Solier L, Gouret G (2007) Variations of 210Po and 210Pb in various marine organisms from Western English Channel: contribution of 210Po to the radiation dose. J Environ Radioact 97(2–3):168–188 DOI

Chang WL, Mun JK, Lee W, Geun SC, Young HC, Hee RK, Kun HC (2009) Assessment of210Po in foodstuffs consumed in Korea. J Radioanal Nucl Chem 279:519–522. https://doi.org/10.1007/s10967-007-7336-y DOI

Pearson AJ, Gaw S, Hermanspahn N, Glover CN (2016) Activity concentrations of 137Caesium and 210Polonium in seafood from fishing regions of New Zealand and the dose assessment for seafood consumers. J Environ Radioact 151:542–550. https://doi.org/10.1016/j.jenvrad.2015.07.026 DOI

Turner A, Turner D, Braungardt C (2013) Biomonitoring of thallium availability in two estuaries of southwest England. Mar Pollut Bull 69(1–2):172–177. https://doi.org/10.1016/j.marpolbul.2013.01.030 DOI

Tatsi K, Turner A, Handy RD, Shaw BJ (2015) The acute toxicity of thallium to freshwater organisms: implications for risk assessment. Sci Total Environ 536:382–390 DOI

Rickwood CJ, King M, Huntsman-Mapila P (2015) Assessing the fate and toxicity of thallium I and thallium III to three aquatic organisms. Ecotoxicol Environ Saf 115:300–308 DOI

Angulo AF, Jacobs MV, van Damme EHA, Akkermans AM, de Kruijff-Kroesen I, Brugman J (2003) Colistin sulfate as a suitable substitute of thallium acetate in culture media intended for mycoplasma detection and culture. Biologicals 31(3):161–163. https://doi.org/10.1016/S1045-1056(03)00031-9 DOI

Zhuang W, Song J (2021) Thallium in aquatic environments and the factors controlling Tl behavior. Environ Sci Pollut Res 28(27):35472–35487. https://doi.org/10.1007/s11356-021-14388-2 DOI

Nagel AH, Cuss CW, Goss GG, Shotyk W, Glover CN (2021) Chronic toxicity of waterborne thallium to Daphnia magna. Environ Pollut 268:115776. https://doi.org/10.1016/j.envpol.2020.115776 DOI

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...