Does Dietary Sodium Alginate with Low Molecular Weight Affect Growth, Antioxidant System, and Haemolymph Parameters and Alleviate Cadmium Stress in Whiteleg Shrimp (Litopenaeus vannamei)?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37889709
PubMed Central
PMC10252018
DOI
10.3390/ani13111805
PII: ani13111805
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant system, cadmium, prebiotics, serological enzyme,
- Publikační typ
- časopisecké články MeSH
Decreasing low molecular weight can improve the digestibility and availability of ingredients such as sodium alginate. This study aimed to test the four dosages of low molecular weight sodium alginate (LMWSA) (0%: Control, 0.05%: 0.5 LMWSA, 0.10%: 1.0 LMWSA, and 0.2%: 2.0 LMWSA) in whiteleg shrimp (Litopenaeus vannamei) (3.88 ± 0.25 g) for eight weeks. After finishing the trial, shrimp were exposed to cadmium (1 mg/L) for 48 h. While feed conversion ratio (FCR) improved in shrimp fed dietary 2.0 LMWSA (p < 0.05), there was no significant difference in growth among treatments. The results showed a linear relation between LMWSA level and FCR, and glutathione S-transferase (GST) before; and malondialdehyde (MDA), glutathione (GSH), GST, and alanine transaminase (ALT) after cadmium stress (p < 0.05). The GST, MDA, ALT, and aspartate transaminase (AST) contents were changed after stress but not the 2.0 LMWSA group. The survival rate after stress in 1.0 LMWSA (85.23%) and 2.0 LMWSA (80.20%) treatments was significantly higher than the Control (62.05%). The survival rate after stress negatively correlated with GST and ALT, introducing them as potential biomarkers for cadmium exposure in whiteleg shrimp. Accordingly, the 2.0 LMWSA treatment had the best performance in the abovementioned parameters. As the linear relation was observed, supplementing more levels of LMWSA to reach a plateau is recommended.
Zobrazit více v PubMed
FAO . The Food and Agriculture Organization. The State of World Fisheries and Aquaculture 2020, Sustainability in Action. Food and Agriculture Organization of the United Nations; Rome, Italy: 2022.
Sotoudeh E., Esmaeili M. Effects of Biotronic® Top3, a feed additive containing organic acids, cinnamaldehyde and a permeabilizing complex on growth, digestive enzyme activities, immunity, antioxidant system and gene expression of barramundi (Lates calcarifer) Aquac. Rep. 2022;24:101152. doi: 10.1016/j.aqrep.2022.101152. DOI
Hui C.-Y., Guo Y., Liu L., Yi J. Recent advances in bacterial biosensing and bioremediation of cadmium pollution: A mini-review. World J. Microbiol. Biotechnol. 2022;38:9. doi: 10.1007/s11274-021-03198-w. PubMed DOI
Sarwar N., Saifullah, Malhi S.S., Zia M.H., Naeem A., Bibi S., Farid G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 2010;90:925–937. doi: 10.1002/jsfa.3916. PubMed DOI
Abkenar A.M., Yahyavi M., Esmaeili M., Rombenso A. High bioaccumulation factors and ecological risk index of Cd and Hg in Indian white shrimp, hooded oyster, brown algae, and Sediment in northern coasts of the Gulf of Oman before and after a monsoon. Reg. Stud. Mar. Sci. 2021;41:101552. doi: 10.1016/j.rsma.2020.101552. DOI
Pourang N., Amini G. Distribution of Trace Elements in Tissues of Two Shrimp Species from Persian Gulf and Effects of Storage Temperature on Elements Transportation. Water Air Soil Pollut. 2001;129:229–243. doi: 10.1023/A:1010371713798. DOI
Gokoglu N., Yerlikaya P., Gokoglu M. Trace elements in edible tissues of three shrimp species (Penaeus semisulcatus, Parapenaeus longirostris and Paleomon serratus) J. Sci. Food Agric. 2008;88:175–178. doi: 10.1002/jsfa.3086. DOI
Tu N.P.C., Ha N.N., Ikemoto T., Tuyen B.C., Tanabe S., Takeuchi I. Regional variations in trace element concentrations in tissues of black tiger shrimp Penaeus monodon (Decapoda: Penaeidae) from South Vietnam. Mar. Pollut. Bull. 2008;57:858–866. doi: 10.1016/j.marpolbul.2008.02.016. PubMed DOI
Costa-Boeddeker S., Hoelzmann P., de Stigter H.C., van Gaever P., Huy H.D., Smol J.P., Schwalb A. Heavy metal pollution in a reforested mangrove ecosystem (Can Gio Biosphere Reserve, Southern Vietnam): Effects of natural and anthropogenic stressors over a thirty-year history. Sci. Total Environ. 2020;716:137035. doi: 10.1016/j.scitotenv.2020.137035. PubMed DOI
Sarkar T., Alam M.M., Parvin N., Fardous Z., Chowdhury A.Z., Hossain S., Haque M., Biswas N. Assessment of heavy metals contamination and human health risk in shrimp collected from different farms and rivers at Khulna-Satkhira region, Bangladesh. Toxicol. Rep. 2016;3:346–350. doi: 10.1016/j.toxrep.2016.03.003. PubMed DOI PMC
Yu B., Wang X., Dong K.F., Xiao G., Ma D. Heavy metal concentrations in aquatic organisms (fishes, shrimp and crabs) and health risk assessment in China. Mar. Pollut. Bull. 2020;159:111505. doi: 10.1016/j.marpolbul.2020.111505. PubMed DOI
Jiao Y., Yang L., Kong Z., Shao L., Wang G., Ren X., Liu Y. Evaluation of trace metals and rare earth elements in mantis shrimp Oratosquilla oratoria collected from Shandong Province, China, and its potential risks to human health. Mar. Pollut. Bull. 2021;162:111815. doi: 10.1016/j.marpolbul.2020.111815. PubMed DOI
Giri S., Singh A.K. Assessment of human health risk for heavy metals in fish and shrimp collected from Subarnarekha river, India. Int. J. Environ. Health Res. 2014;24:429–449. doi: 10.1080/09603123.2013.857391. PubMed DOI
Mitra A., Banerjee K., Sinha S. Shrimp tissue quality in the lower Gangetic delta at the apex of Bay of Bengal. Toxicol. Environ. Chem. 2011;93:565–574. doi: 10.1080/02772248.2010.542156. DOI
Núñez-Nogueira G., Fernández-Bringas L., Ordiano-Flores A., Gómez-Ponce A., de León-Hill C.P., González-Farías F. Accumulation and regulation effects from the metal mixture of Zn, Pb, and Cd in the tropical shrimp Penaeus vannamei. Biol. Trace Elem. Res. 2012;150:208–213. doi: 10.1007/s12011-012-9500-z. PubMed DOI
Jara-Marini M.E., Molina-García A., Martínez-Durazo Á., Páez-Osuna F. Trace metal trophic transference and biomagnification in a semiarid coastal lagoon impacted by agriculture and shrimp aquaculture. Environ. Sci. Pollut. Res. 2020;27:5323–5336. doi: 10.1007/s11356-019-06788-2. PubMed DOI
Wang Y.Q., Qi C.L., Song J.X., Deng H.H., Ding Z.L., Liu Y., Wei S.S., Ye J.Y., Kong Y.Q. The negative effects of dietary cadmium on antioxidant capacity, immunity and intestine morphology of Macrobrachium nipponense and the alleviation effects of lipoic acid. Aquac. Nutr. 2021;27:1212–1220. doi: 10.1111/anu.13262. DOI
Duan Y., Wang Y., Huang J., Li H., Dong H., Zhang J. Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei. Mar. Pollut. Bull. 2021;167:112220. doi: 10.1016/j.marpolbul.2021.112220. PubMed DOI
Liu Y., Chen Q., Li Y., Bi L., Jin L., Peng R. Toxic Effects of Cadmium on Fish. Toxics. 2022;10:622. doi: 10.3390/toxics10100622. PubMed DOI PMC
Zhai Q., Yu L., Li T., Zhu J., Zhang C., Zhao J., Zhang H., Chen W. Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie Van Leeuwenhoek. 2017;110:501–513. doi: 10.1007/s10482-016-0819-x. PubMed DOI
El-Houseiny W., Khalil A.A., Abd-Elhakim Y.M., Badr H.A. The potential role of turmeric and black pepper powder diet supplements in reversing cadmium-induced growth retardation, ATP depletion, hepatorenal damage, and testicular toxicity in Clarias gariepinus. Aquaculture. 2019;510:109–121. doi: 10.1016/j.aquaculture.2019.05.045. DOI
Banaee M., Mehrpak M., Hagi B.B.N., Noori A. Amelioration of cadmium-induced changes in biochemical parameters of the muscle of Common Carp (Cyprinus carpio) by Vitamin C and Chitosan. Int. J. Aquat. Biol. 2015;3:362–371.
Ren H., Jia H., Kim S., Maita M., Sato S., Yasui M., Endo H., Hayashi T. Effect of Chinese parsley Coriandrum sativum and chitosan on inhibiting the accumulation of cadmium in cultured rainbow trout Oncorhynchus mykiss. Fish. Sci. 2006;72:263–269. doi: 10.1111/j.1444-2906.2006.01147.x. DOI
Elgendy M.Y., Ali S.E., Abdelsalam M., El-Aziz T.H.A., Abo-Aziza F., Osman H.A., Authman M.M.N., Abbas W.T. Onion (Allium cepa) improves Nile tilapia (Oreochromis niloticus) resistance to saprolegniasis (Saprolegnia parasitica) and reduces immunosuppressive effects of cadmium. Aquac. Int. 2023;31:1457–1481. doi: 10.1007/s10499-022-01035-x. DOI
Neamat-Allah A.N., El-Murr A.E.I., Abd El-Hakim Y. Dietary supplementation with low molecular weight sodium alginate improves growth, haematology, immune reactions and resistance against Aeromonas hydrophila in Clarias gariepinus. Aquac. Res. 2019;50:1547–1556. doi: 10.1111/are.14031. DOI
Ashouri G., Soofiani N.M., Hoseinifar S.H., Jalali S.A.H., Morshedi V., Valinassab T., Bagheri D., Van Doan H., Mozanzadeh M.T., Carnevali O. Influence of dietary sodium alginate and Pediococcus acidilactici on liver antioxidant status, intestinal lysozyme gene expression, histomorphology, microbiota, and digestive enzymes activity, in Asian sea bass (Lates calcarifer) juveniles. Aquaculture. 2020;518:734638. doi: 10.1016/j.aquaculture.2019.734638. DOI
Yeh S.-P., Chang C.-A., Chang C.-Y., Liu C.-H., Cheng W. Dietary sodium alginate administration affects fingerling growth and resistance to Streptococcus sp. and iridovirus, and juvenile non-specific immune responses of the orange-spotted grouper, Epinephelus coioides. Fish Shellfish. Immunol. 2008;25:19–27. doi: 10.1016/j.fsi.2007.11.011. PubMed DOI
Liu C.-H., Yeh S.-P., Kuo C.-M., Cheng W., Chou C.-H. The effect of sodium alginate on the immune response of tiger shrimp via dietary administration: Activity and gene transcription. Fish Shellfish. Immunol. 2006;21:442–452. doi: 10.1016/j.fsi.2006.02.003. PubMed DOI
Cheng W., Liu C.-H., Kuo C.-M., Chen J.-C. Dietary administration of sodium alginate enhances the immune ability of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish. Immunol. 2005;18:1–12. doi: 10.1016/j.fsi.2004.03.002. PubMed DOI
Cheng A.-C., Tu C.-W., Chen Y.-Y., Nan F.-H., Chen J.-C. The immunostimulatory effects of sodium alginate and iota-carrageenan on orange-spotted grouper Epinephelus coicoides and its resistance against Vibrio alginolyticus. Fish Shellfish. Immunol. 2007;22:197–205. doi: 10.1016/j.fsi.2006.04.009. PubMed DOI
Chiu S.-T., Tsai R.-T., Hsu J.-P., Liu C.-H., Cheng W. Dietary sodium alginate administration to enhance the non-specific immune responses, and disease resistance of the juvenile grouper Epinephelus fuscoguttatus. Aquaculture. 2008;277:66–72. doi: 10.1016/j.aquaculture.2008.01.032. DOI
Asaduzzaman M., Iehata S., Moudud Islam M., Kader M.A., Ambok Bolong A.M., Ikeda D., Kinoshita S. Sodium alginate supplementation modulates gut microbiota, health parameters, growth performance and growth-related gene expression in Malaysian Mahseer Tor tambroides. Aquac. Nutr. 2019;25:1300–1317. doi: 10.1111/anu.12950. DOI
Chung M.-Y., Liu C.-H., Chen Y.-N., Cheng W. Enhancing the reproductive performance of tiger shrimp, Penaeus monodon, by incorporating sodium alginate in the broodstock and larval diets. Aquaculture. 2011;312:180–184. doi: 10.1016/j.aquaculture.2010.11.047. DOI
Song Y., Liu L., Shen H., You J., Luo Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala) Food Control. 2011;22:608–615. doi: 10.1016/j.foodcont.2010.10.012. DOI
Cejko B.I., Dryl K., Sarosiek B., Ilgert J., Jesiołowski M., Kowalski R.K. Application of sodium alginate solution for short-term storage of different volumes of sex-reversed rainbow trout (Oncorhynchus mykiss) testicular sperm. Aquaculture. 2022;560:738491. doi: 10.1016/j.aquaculture.2022.738491. DOI
MacArtain P., Gill C.I., Brooks M., Campbell R., Rowland I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007;65:535–543. doi: 10.1111/j.1753-4887.2007.tb00278.x. PubMed DOI
Van Doan H., Hoseinifar S.H., Tapingkae W., Khamtavee P. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus) Fish Shellfish. Immunol. 2017;62:139–146. doi: 10.1016/j.fsi.2017.01.014. PubMed DOI
Ashouri G., Soofiani N.M., Hoseinifar S.H., Jalali S.A.H., Morshedi V., Van Doan H., Mozanzadeh M.T. Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish Shellfish. Immunol. 2018;79:34–41. doi: 10.1016/j.fsi.2018.05.009. PubMed DOI
Van Doan H., Hoseinifar S.H., Tapingkae W., Tongsiri S., Khamtavee P. Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus) Fish Shellfish. Immunol. 2016;58:678–685. doi: 10.1016/j.fsi.2016.10.013. PubMed DOI
Ahmadi-Noorbakhsh S., Ardakani E.M., Sadighi J., Aldavood S.J., Abbasi M.F., Farzad-Mohajeri S., Ghasemi A., Sharif-Paghaleh E., Hatami Z., Nikravanfard N., et al. Guideline for the Care and Use of Laboratory Animals in Iran. Lab Anim. 2021;50:303–305. doi: 10.1038/s41684-021-00871-3. PubMed DOI
Van Doan H., Tapingkae W., Moonmanee T., Seepai A. Effects of low molecular weight sodium alginate on growth performance, immunity, and disease resistance of tilapia, Oreochromis niloticus. Fish Shellfish. Immunol. 2016;55:186–194. doi: 10.1016/j.fsi.2016.05.034. PubMed DOI
Official Methods of Analysis of the AOAC International, The Association. AOAC; Rockville, MD, USA: 2000.
Abele D., Zenteno-Savin T., Vazquez-Medina J.P. Oxidative Stress in Aquatic Ecosystems. John Wiley & Sons; Hoboken, NJ, USA: 2011.
Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974;249:7130–7139. doi: 10.1016/S0021-9258(19)42083-8. PubMed DOI
Reilly C.A., Aust S.D. Measurement of Lipid Peroxidation. Curr. Protoc. Toxicol. 1999;1:2.4.1–2.4.13. doi: 10.1002/0471140856.tx0204s00. PubMed DOI
Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI
Zaretabar A., Ouraji H., Kenari A.A., Yeganeh S., Esmaeili M., Amirkolaee A.K. One step toward aquaculture sustainability of a carnivorous species: Fish meal replacement with barley protein concentrate plus wheat gluten meal in Caspian brown trout (Salmo trutta caspius) Aquac. Rep. 2021;20:100714. doi: 10.1016/j.aqrep.2021.100714. DOI
Wu J.P., Chen H.-C. Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei) Chemosphere. 2004;57:1591–1598. doi: 10.1016/j.chemosphere.2004.07.033. PubMed DOI
Aoe S., Mio K., Yamanaka C., Kuge T. Low Molecular Weight Barley β-Glucan Affects Glucose and Lipid Metabolism by Prebiotic Effects. Nutrients. 2020;13:130. doi: 10.3390/nu13010130. PubMed DOI PMC
Gamonpilas C., Buathongjan C., Sangwan W., Rattanaprasert M., Weizman K., Klomtun M., Phonsatta N., Methacanon P. Production of low molecular weight pectins via electron beam irradiation and their potential prebiotic functionality. Food Hydrocoll. 2021;113:106551. doi: 10.1016/j.foodhyd.2020.106551. DOI
Paesani C., Sciarini L.S., Moiraghi M., Salvucci E., Prado S.B., Pérez G.T., Fabi J.P. Human colonic in vitro fermentation of water-soluble arabinoxylans from hard and soft wheat alters Bifidobacterium abundance and short-chain fatty acids concentration. LWT. 2020;134:110253. doi: 10.1016/j.lwt.2020.110253. DOI
Wang M., Wichienchot S., He X., Fu X., Huang Q., Zhang B. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci. Technol. 2019;88:1–9. doi: 10.1016/j.tifs.2019.03.005. DOI
Olano-Martin E., Mountzouris K.C., Gibson G.R., Rastall R.A. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Br. J. Nutr. 2000;83:247–255. doi: 10.1017/S0007114500000325. PubMed DOI
Van Laere K.M.J., Hartemink R., Bosveld M., Schols H.A., Voragen A.G.J. Fermentation of Plant Cell Wall Derived Polysaccharides and Their Corresponding Oligosaccharides by Intestinal Bacteria. J. Agric. Food Chem. 2000;48:1644–1652. doi: 10.1021/jf990519i. PubMed DOI
Cheng W., Liu C.-H., Yeh S.-T., Chen J.-C. The immune stimulatory effect of sodium alginate on the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish. Immunol. 2004;17:41–51. doi: 10.1016/j.fsi.2003.11.004. PubMed DOI
Santos H.M., Tsai C.Y., Yanuaria C.A.S., Tayo L.L., Vo D.D., Mariatulqabtiah A.R., Chuang K.P. Effects of sodium alginate-fed Pacific white shrimps, Litopenaeus vannamei, on Toll-like receptors and Vibrio alginolyticus infection. Aquac. Res. 2019;50:1384–1392. doi: 10.1111/are.13989. DOI
Fujiki K., Matsuyama H., Yano T. Protective effect of sodium alginates against bacterial infection in common carp, Cyprinus carpio L. J. Fish Dis. 1994;17:349–355. doi: 10.1111/j.1365-2761.1994.tb00230.x. DOI
Shearer K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture. 1994;119:63–88. doi: 10.1016/0044-8486(94)90444-8. DOI
Romano N., Simon W., Ebrahimi M., Fadel A.H., Chong C.M., Kamarudin M.S. Dietary sodium citrate improved oxidative stability in red hybrid tilapia (Oreochromis sp.) but reduced growth, health status, intestinal short chain fatty acids and induced liver damage. Aquaculture. 2016;458:170–176. doi: 10.1016/j.aquaculture.2016.03.014. DOI
Matés J.M., Pérez-Gómez C., De Castro I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999;32:595–603. doi: 10.1016/S0009-9120(99)00075-2. PubMed DOI
Qu R.-J., Wang X.-H., Feng M.-B., Li Y., Liu H.-X., Wang L.-S., Wang Z.-Y. The toxicity of cadmium to three aquatic organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) under different pH levels. Ecotoxicol. Environ. Saf. 2013;95:83–90. doi: 10.1016/j.ecoenv.2013.05.020. PubMed DOI
Jia X., Zhang H., Liu X. Low levels of cadmium exposure induce DNA damage and oxidative stress in the liver of Oujiang colored common carp Cyprinus carpio var. color. Fish Physiol. Biochem. 2011;37:97–103. doi: 10.1007/s10695-010-9416-5. PubMed DOI
Deng B., Wang Z., Tao W., Li W., Wang C., Wang M., Ye S., Du Y., Wu X., Wu D. Effects of polysaccharides from mycelia of Cordyceps sinensis on growth performance, immunity and antioxidant indicators of the white shrimp Litopenaeus vannamei. Aquac. Nutr. 2015;21:173–179. doi: 10.1111/anu.12147. DOI
Mohan K., Padmanaban M., Uthayakumar V. Effects of Ganoderma lucidum crude polysaccharides (GLCP) on growth, survival and biochemical composition of the freshwater prawn Macrobrachium rosenbergii post larvae. Res. J. Chem. Environ. 2015;19:9.
Hoseinifar S.H., Hoseini S.M., Bagheri D. Effects of Galactooligosaccharide and Pediococcus acidilactici on Antioxidant Defence and Disease Resistance of Rainbow Trout, Oncorhynchus mykiss. Ann. Anim. Sci. 2017;17:217–227. doi: 10.1515/aoas-2016-0024. DOI
Rohani F., Islam S.M., Hossain K., Ferdous Z., Siddik M.A., Nuruzzaman M., Padeniya U., Brown C. Shahjahan Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish Shellfish. Immunol. 2021;120:569–589. doi: 10.1016/j.fsi.2021.12.037. PubMed DOI
Abdel-Latif H.M., Dawood M.A., Alagawany M., Faggio C., Nowosad J., Kucharczyk D. Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. Fish Shellfish. Immunol. 2022;122:115–130. doi: 10.1016/j.fsi.2022.01.039. PubMed DOI
Mohan K., Rajan D.K., Muralisankar T., Ganesan A.R., Marimuthu K., Sathishkumar P. The potential role of medicinal mushrooms as prebiotics in aquaculture: A review. Rev. Aquac. 2022;14:1300–1332. doi: 10.1111/raq.12651. DOI
Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquac. 2020;29:198–217. doi: 10.1080/23308249.2020.1795616. DOI
Celep A.G.S., Demirkaya A., Solak E.K. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer. Curr. Appl. Phys. 2020;40:30–42. doi: 10.1016/j.cap.2020.06.002. DOI
Sun X., Zhang H., Wang J., Dong M., Jia P., Bu T., Wang Q., Wang L. Sodium alginate-based nanocomposite films with strong antioxidant and antibacterial properties enhanced by polyphenol-rich kiwi peel extracts bio-reduced silver nanoparticles. Food Packag. Shelf Life. 2021;29:100741. doi: 10.1016/j.fpsl.2021.100741. DOI
Tejpal C., Pal A., Sahu N., Kumar J.A., Muthappa N., Vidya S., Rajan M. Dietary supplementation of l-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings. Aquaculture. 2009;293:272–277. doi: 10.1016/j.aquaculture.2008.09.014. DOI
Liu F., Shi H.-Z., Guo Q.-S., Yu Y.-B., Wang A.-M., Lv F., Shen W.-B. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco) Fish Shellfish. Immunol. 2016;51:125–135. doi: 10.1016/j.fsi.2016.02.020. PubMed DOI
Dawood M.A., Gewaily M.S., Monier M.N., Younis E.M., Van Doan H., Sewilam H. The regulatory roles of yucca extract on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture. 2021;534:736287. doi: 10.1016/j.aquaculture.2020.736287. DOI
Sun Z., Tan X., Liu Q., Ye H., Zou C., Xu M., Zhang Y., Ye C. Physiological, immune responses and liver lipid metabolism of orange-spotted grouper (Epinephelus coioides) under cold stress. Aquaculture. 2019;498:545–555. doi: 10.1016/j.aquaculture.2018.08.051. DOI
Esmaeili M., Hosseini H., Zare M., Akhavan S.R., Rombenso A. Early Mild Stress along with Lipid Improves the Stress Responsiveness of Oscar (Astronotus ocellatus) Aquac. Nutr. 2022;2022:8991678. doi: 10.1155/2022/8991678. PubMed DOI PMC
Yu Y.Y., Chen S.J., Chen M., Tian L.X., Niu J., Liu Y.J., Xu D.H. Effect of cadmium-polluted diet on growth, salinity stress, hepatotoxicity of juvenile Pacific white shrimp (Litopenaeus vannamei): Protective effect of Zn (II)–curcumin. Ecotoxicol. Environ. Saf. 2016;125:176–183. doi: 10.1016/j.ecoenv.2015.11.043. PubMed DOI
Chen S., Zhuang Z., Yin P., Chen X., Zhang Y., Tian L., Niu J., Liu Y. Changes in growth performance, haematological parameters, hepatopancreas histopathology and antioxidant status of pacific white shrimp (Litopenaeus vannamei) fed oxidized fish oil: Regulation by dietary myo-inositol. Fish Shellfish. Immunol. 2019;88:53–64. doi: 10.1016/j.fsi.2019.02.023. PubMed DOI
Zare M., Esmaeili N., Hosseini H., Choupani S.M.H., Akhavan S., Rombenso A. Fish meal replacement and early mild stress improve stress responsiveness of oscar (Astronotus ocellatus) in future stressful events. Animals. 2023;18:1314. doi: 10.3390/ani13081314. DOI
Zare M., Heidari E., Choupani S.M.H., Akhavan S., Rombenso A., Esmaeili N. The recovery time between early mild stress and final acute stress affects survival rate, growth, immunity, health physiology, and stress response of oscar (Astronotus ocellatus) Animals. 2023;13:1606. doi: 10.3390/ani13101606. PubMed DOI PMC
Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review