The Recovery Time between Early Mild Stress and Final Acute Stress Affects Survival Rate, Immunity, Health, and Physiology of Oscar (Astronotus ocellatus)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37238036
PubMed Central
PMC10215278
DOI
10.3390/ani13101606
PII: ani13101606
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant response, blood biochemistry, blood performance, stress physiology, stress response,
- Publikační typ
- časopisecké články MeSH
This study investigated how the time interval between the last EMS (netting) and the acute confinement stress (AC stress) at the end of the experiment can influence growth, haematology, blood biochemistry, immunological response, antioxidant system, liver enzymes, and stress response of oscar (Astronotus ocellatus; 5.7 ± 0.8 g). Nine experimental treatments were tested, as follows: Control, Stress28 (EMS in weeks two and eight), Stress27 (EMS in weeks two and seven), Stress26 (EMS in weeks two and six), Stress25 (EMS in weeks two and five), Stress24 (EMS in week two and four), Stress23 (EMS in week two and three), Stress78 (EMS in week seven and eight), and Stress67 (EMS in week six and seven). After the nine-week experimental period, while it was not significant, fish exposed to Stress78 (26.78 g) and Stress67 (30.05 g) had the lowest growth rates. After AC stress, fish exposed to Stress78 (63.33%) and Control (60.00%) showed the lowest survival rate. The Stress78 fish displayed low resilience, illustrated by values of blood performance, LDL, total protein, lysozyme, ACH50, immunoglobin, complement component 4, complement component 3, cortisol, superoxide dismutase, catalase, and alanine aminotransferase. In conclusion, gathering consecutive stress and not enough recovery time in the Stress78 group negatively affected stress responsiveness and the health of oscar.
Department of Fisheries Faculty Marine Science Tarbiat Modares University Noor 46414 356 Iran
Institute for Marine and Antarctic Studies University of Tasmania Hobart TAS 7005 Australia
Nelson Marlborough Institute of Technology 322 Hardy Street Private Bag 19 Nelson 7010 New Zealand
Zobrazit více v PubMed
Ghosi Mobaraki M.R., Abedian Kenari A., Bahrami Gorji S., Esmaeili M. Effect of dietary fish and vegetable oil on the growth performance, body composition, fatty acids profile, reproductive performance and larval resistance in pearl gourami (Trichogaster leeri) Aquac. Nutr. 2020;26:894–907. doi: 10.1111/anu.13048. DOI
Martos-Sitcha J.A., Mancera J.M., Prunet P., Magnoni L.J. Welfare and Stressors in Fish: Challenges Facing Aquaculture. Front. Media SA. 2020;11:162. doi: 10.3389/fphys.2020.00162. PubMed DOI PMC
Schreck C.B., Tort L. Fish Physiology. Volume 35. Elsevier; Amsterdam, The Netherlands: 2016. The concept of stress in fish; pp. 1–34.
Esmaeili M., Hosseini H., Zare M., Sobhan R., Akhavan Rombenso A. Early Mild Stress along with Lipid Improves the Stress Responsiveness of Oscar (Astronotus ocellatus) Aquac. Nutr. 2022;2022:8991678. doi: 10.1155/2022/8991678. PubMed DOI PMC
Pattanaik S.S., Sawant P.B., KA M.X., Srivastava P.P., Dube K., Sawant B.T., Chadha N. Dietary carotenoprotien extracted from shrimp shell waste augments growth, feed utilisation, physio-metabolic responses and colouration in Oscar, Astronotus ocellatus (Agassiz, 1831) Aquaculture. 2021;534:736303. doi: 10.1016/j.aquaculture.2020.736303. DOI
Wood C.M., Kajimura M., Sloman K.A., Scott G.R., Walsh P.J., Almeida-Val V.M., Val A.L. Rapid regulation of Na+ fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar, Astronotus ocellatus. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007;292:R2048–R2058. doi: 10.1152/ajpregu.00640.2006. PubMed DOI
Matey V., Iftikar F.I., De Boeck G., Scott G.R., Sloman K.A., Almeida-Val V.M., Val A.L., Wood C.M. Gill morphology and acute hypoxia: Responses of mitochondria-rich, pavement, and mucous cells in the Amazonian oscar (Astronotus ocellatus) and the rainbow trout (Oncorhynchus mykiss), two species with very different approaches to the osmo-respiratory compromise. Can. J. Zool. 2011;89:307–324.
De Boeck G., Wood C.M., Iftikar F.I., Matey V., Scott G.R., Sloman K.A., de Nazaré Paula da Silva M., Almeida-Val V.M., Val A.L. Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus. J. Exp. Biol. 2013;216:4590–4600. doi: 10.1242/jeb.082891. PubMed DOI
Baptista R.B., Souza-Castro N., Almeida-Val V.M.F. Acute hypoxia up-regulates HIF-1α and VEGF mRNA levels in Amazon hypoxia-tolerant Oscar (Astronotus ocellatus) Fish Physiol. Biochem. 2016;42:1307–1318. doi: 10.1007/s10695-016-0219-1. PubMed DOI
Madaro A., Olsen R.E., Kristiansen T.S., Ebbesson L.O., Nilsen T.O., Flik G., Gorissen M. Stress in Atlantic salmon: Response to unpredictable chronic stress. J. Exp. Biol. 2015;218:2538–2550. doi: 10.1242/jeb.120535. PubMed DOI
Vindas M.A., Madaro A., Fraser T.W., Höglund E., Olsen R.E., Øverli Ø., Kristiansen T.S. Coping with a changing environment: The effects of early life stress. R. Soc. Open Sci. 2016;3:160382. doi: 10.1098/rsos.160382. PubMed DOI PMC
Auperin B., Geslin M. Plasma cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg cortisol content. Gen. Comp. Endocrinol. 2008;158:234–239. doi: 10.1016/j.ygcen.2008.07.002. PubMed DOI
Zare M., Esmaeili N., Hosseini H., Akhavan S., Rombenso A. How do optimum dietary protein and early mild stress events prepare fish for a stressful future? Stress responsiveness of oscar (Astronotus ocellatus) Aquac. Nutr. 2023 in press . PubMed PMC
Zare M., Esmaeili M., Hosseini H., Choupani S.m.H., Akhavan S., Rombenso A. Fish meal replacement and early mild stress improve stress responsiveness of oscar (Astronotus ocellatus) in future stressful events. Animals. 2023;13:1314. doi: 10.3390/ani13081314. PubMed DOI PMC
Ahmadi-Noorbakhsh S., Mirabzadeh Ardakani E., Sadighi J., Aldavood S.J., Farajli Abbasi M., Farzad-Mohajeri S., Ghasemi A., Sharif-Paghaleh E., Hatami Z., Nikravanfard N. Guideline for the care and use of laboratory animals in Iran. Lab Anim. 2021;50:303–305. doi: 10.1038/s41684-021-00871-3. PubMed DOI
Hosseinpour Aghaei R., Abedian Kenari A., Yazdani Sadati M.A., Esmaeili M. The effect of time-dependent protein restriction on growth factors, nonspecific immunity, body composition, fatty acids and amino acids in the Siberian sturgeon (Acipenser baerii) Aquac. Res. 2018;49:3033–3044. doi: 10.1111/are.13764. DOI
Esmaeili M., Abedian Kenari A., Rombenso A. Immunohematological status under acute ammonia stress of juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fed garlic (Allium sativum) powder-supplemented meat and bone meal-based feeds. Comp. Clin. Pathol. 2017;26:853–866. doi: 10.1007/s00580-017-2457-8. DOI
Zaretabar A., Ouraji H., Kenari A.A., Yeganeh S., Esmaeili M., Amirkolaee A.K. One step toward aquaculture sustainability of a carnivorous species: Fish meal replacement with barley protein concentrate plus wheat gluten meal in Caspian brown trout (Salmo trutta caspius) Aquac. Rep. 2021;20:100714. doi: 10.1016/j.aqrep.2021.100714. DOI
AOAC . Official Methods of Analysis of the AOAC International. Volume 18 The Association; Gaithersburg, ML, USA: 2000.
Kenari A.A., Mahmoudi N., Soltani M., Abediankenari S. Dietary nucleotide supplements influence the growth, haemato-immunological parameters and stress responses in endangered Caspian brown trout (Salmo trutta caspius Kessler, 1877) Aquac. Nutr. 2013;19:54–63. doi: 10.1111/j.1365-2095.2012.00938.x. DOI
Řehulka J., Minařík B., Řehulková E. Red blood cell indices of rainbow trout Oncorhynchus mykiss (Walbaum) in aquaculture. Aquac. Res. 2004;35:529–546. doi: 10.1111/j.1365-2109.2004.01035.x. DOI
Wintrobe M. The volume and hemoglobin content of the red blood corpuscle: Simple method of calculation, normal findings, and value of such calculations in the anemias. Am. J. Med. Sci. 1929;177:513–522. doi: 10.1097/00000441-192904000-00006. DOI
Esmaeili M. Blood Performance: A New Formula for Fish Growth and Health. Biology. 2021;10:1236. doi: 10.3390/biology10121236. PubMed DOI PMC
Clerton P., Troutaud D., Verlhac V., Gabaudan J., Deschaux P. Dietary vitamin E and rainbow trout (Oncorhynchus mykiss) phagocyte functions: Effect on gut and on head kidney leucocytes. Fish Shellfish. Immunol. 2001;11:1–13. doi: 10.1006/fsim.2000.0287. PubMed DOI
Amar E.C., Kiron V., Satoh S., Okamoto N., Watanabe T. Effects of dietary β-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fish. Sci. 2000;66:1068–1075. doi: 10.1046/j.1444-2906.2000.00170.x. DOI
Hosseini H., Pooyanmehr M., Foroughi A., Esmaeili M., Ghiasi F., Lorestany R. Remarkable positive effects of figwort (Scrophularia striata) on improving growth performance, and immunohematological parameters of fish. Fish Shellfish. Immunol. 2022;120:111–121. doi: 10.1016/j.fsi.2021.11.020. PubMed DOI
Asgari M., Abedian Kenari A., Esmaeili M., Rombenso A. Effects of hydroalcoholic extract of honeybee pollen on growth performance, flesh quality, and immune and stress response of rainbow trout (Oncorhynchus mykiss) Aquac. Nutr. 2020;26:1505–1519. doi: 10.1111/anu.13098. DOI
Pickering A., Pottinger T., Christie P. Recovery of the brown trout, Salmo trutta L., from acute handling stress: A time-course study. J. Fish Biol. 1982;20:229–244. doi: 10.1111/j.1095-8649.1982.tb03923.x. DOI
Kavitha P., Rao J.V. Oxidative stress and locomotor behaviour response as biomarkers for assessing recovery status of mosquito fish, Gambusia affinis after lethal effect of an organophosphate pesticide, monocrotophos. Pestic. Biochem. Physiol. 2007;87:182–188. doi: 10.1016/j.pestbp.2006.07.008. DOI
Douxfils J., Mandiki S., Marotte G., Wang N., Silvestre F., Milla S., Henrotte E., Vandecan M., Rougeot C., Mélard C. Does domestication process affect stress response in juvenile Eurasian perch Perca fluviatilis? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011;159:92–99. doi: 10.1016/j.cbpa.2011.01.021. PubMed DOI
Ericsson M., Fallahsharoudi A., Bergquist J., Kushnir M.M., Jensen P. Domestication effects on behavioural and hormonal responses to acute stress in chickens. Physiol. Behav. 2014;133:161–169. doi: 10.1016/j.physbeh.2014.05.024. PubMed DOI
Esmaeili M., Carter C.G., Wilson R., Walker S.P., Miller M.R., Bridle A.R., Symonds J.E. Protein metabolism in the liver and white muscle is associated with feed efficiency in Chinook salmon (Oncorhynchus tshawytscha) reared in seawater: Evidence from proteomic analysis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2022;42:100994. doi: 10.1016/j.cbd.2022.100994. PubMed DOI
Barton B.A., Schreck C.B., Barton L.D. Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis. Aquat. Org. 1987;2:173–185. doi: 10.3354/dao002173. DOI
Peters G., Schwarzer R. Changes in hemopoietic tissue of rainbow trout under influence of stress. Dis. Aquat. Org. 1985;1:1–10. doi: 10.3354/dao001001. DOI
Shearer K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture. 1994;119:63–88. doi: 10.1016/0044-8486(94)90444-8. DOI
Herrera M., Mancera J.M., Costas B. The use of dietary additives in fish stress mitigation: Comparative endocrine and physiological responses. Front. Endocrinol. 2019;10:447. doi: 10.3389/fendo.2019.00447. PubMed DOI PMC
Fazio F. Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture. 2019;500:237–242. doi: 10.1016/j.aquaculture.2018.10.030. DOI
Ravardshiri M., Bahram S., Javadian S.R., Bahrekazemi M. Cinnamon Promotes Growth Performance, Digestive Enzyme, Blood Parameters, and Antioxidant Activity of Rainbow Trout (Oncorhynchus mykiss) in Low-Carbohydrate Diets. Turk. J. Fish. Aquat. Sci. 2021;21:309–322. doi: 10.4194/1303-2712-v21_7_01. DOI
Montazeri H., Abedian Kenari A., Esmaeili M. Soybean-based diets plus probiotics improve the profile of fatty acids, digestibility, intestinal microflora, growth performance, and the innate immunity of beluga (Huso huso) Aquac. Res. 2021;52:152–166. doi: 10.1111/are.14877. DOI
Hosseini H., Esmaeili M., Zare M., Rombenso A. Egg enrichment with n-3 fatty acids in farmed hens in sub-optimum temperature: A cold-temperament additive mix alleviates adverse effects of stress on performance and health. J. Anim. Physiol. Anim. Nutr. 2021;106:1333–1334. doi: 10.1111/jpn.13659. PubMed DOI
Saleh N.E., Mourad M.M., El-Banna S.G., Abdel-Tawwab M. Soybean protein concentrate as a fishmeal replacer in weaning diets for common sole (Solea solea) post-larvae: Effects on the growth, biochemical and oxidative stress biomarkers, and histopathological investigations. Aquaculture. 2021;544:737080. doi: 10.1016/j.aquaculture.2021.737080. DOI
Zhao H., Wu Z., Zhou Y., Guo D., Wang H., Chen X. Hepatic lipid metabolism and oxidative stress responses of grass carp (Ctenopharyngodon idella) fed diets of two different lipid levels against Aeromonas hydrophila infection. Aquaculture. 2019;509:149–158. doi: 10.1016/j.aquaculture.2019.05.029. DOI
Spickett C.M., Forman H.J. Lipid Oxidation in Health and Disease. CRC Press; Boca Raton, FL, USA: 2015.
Bae Y.-S., Shin E.-C., Bae Y.-S., Van Eden W. Stress and immunity. Front. Media SA. 2019;10:245. PubMed PMC
Holzer P., Farzi A., Hassan A.M., Zenz G., Jačan A., Reichmann F. Visceral inflammation and immune activation stress the brain. Front. Immunol. 2017;8:1613. doi: 10.3389/fimmu.2017.01613. PubMed DOI PMC
Tort L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011;35:1366–1375. doi: 10.1016/j.dci.2011.07.002. PubMed DOI
Pottinger T. Changes in blood cortisol, glucose and lactate in carp retained in anglers’ keepnets. J. Fish Biol. 1998;53:728–742. doi: 10.1006/jfbi.1998.0737. DOI
Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquac. 2020;29:198–217. doi: 10.1080/23308249.2020.1795616. DOI
Li Z.-H., Zlabek V., Velisek J., Grabic R., Machova J., Randak T. Modulation of antioxidant defence system in brain of rainbow trout (Oncorhynchus mykiss) after chronic carbamazepine treatment. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010;151:137–141. doi: 10.1016/j.cbpc.2009.09.006. PubMed DOI
Hegazi M.M., Attia Z.I., Ashour O.A. Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 2010;99:118–125. doi: 10.1016/j.aquatox.2010.04.007. PubMed DOI
Tejpal C., Pal A., Sahu N., Kumar J.A., Muthappa N., Vidya S., Rajan M. Dietary supplementation of L-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings. Aquaculture. 2009;293:272–277. doi: 10.1016/j.aquaculture.2008.09.014. DOI
Liu F., Shi H.-z., Guo Q.-s., Yu Y.-b., Wang A.-m., Lv F., Shen W.-b. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco) Fish Shellfish. Immunol. 2016;51:125–135. doi: 10.1016/j.fsi.2016.02.020. PubMed DOI
Dawood M.A., Gewaily M.S., Monier M.N., Younis E.M., Van Doan H., Sewilam H. The regulatory roles of yucca extract on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture. 2021;534:736287. doi: 10.1016/j.aquaculture.2020.736287. DOI
Sun Z., Tan X., Liu Q., Ye H., Zou C., Xu M., Zhang Y., Ye C. Physiological, immune responses and liver lipid metabolism of orange-spotted grouper (Epinephelus coioides) under cold stress. Aquaculture. 2019;498:545–555. doi: 10.1016/j.aquaculture.2018.08.051. DOI
Hoseini S.M., Gupta S.K., Yousefi M., Kulikov E.V., Drukovsky S.G., Petrov A.K., Mirghaed A.T., Hoseinifar S.H., Van Doan H. Mitigation of transportation stress in common carp, Cyprinus carpio, by dietary administration of turmeric. Aquaculture. 2022;564:737380. doi: 10.1016/j.aquaculture.2021.737380. DOI