Fish Meal Replacement and Early Mild Stress Improve Stress Responsiveness and Survival of Fish after Acute Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37106878
PubMed Central
PMC10135171
DOI
10.3390/ani13081314
PII: ani13081314
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant responses, blood biochemistry, blood performance, stress physiology, stress responses,
- Publikační typ
- časopisecké články MeSH
Stress responsiveness and fish meal (FM) replacement are two of the most important concerns toward achieving sustainable aquaculture. The purpose of this study was to see how early mild stress (netting) and FM replacement with meat and bone meal (MBM) affected oscar (Astronotus ocellatus; 5.2 ± 0.9 g) growth, hematology, blood biochemistry, immune responses, antioxidant system, liver enzymes, and stress responses. Oscars were subjected to a 3 × 3 experimental design (three fish meal replacement levels: 250, 180 and 110 g/kg of FM in diets; three stress periods: 0-, 2- and 3-times early mild stress). After ten weeks of the experiment, FM levels in diets did not affect growth data, but the survival rate after the acute confinement (AC) stress was lower in 11FM treatments (47.7% compared to 67.7%) than others. Fish exposed to the 3Stress schedule had a lower growth (31.03 ± 6.50 g) and survival rate (55.5%) after the AC stress than the 2Stress group (38.92 ± 6.82 g and 70.0%). Lower survival and growth rate in the 3Stress and 11FM groups coincided with the lowest blood performance, total protein, lysozyme, complement C4, complement C3, immunoglobulin, superoxide dismutase, catalase, glutathione peroxidase, and the highest glucose, cortisol, low-density lipoprotein and aspartate aminotransferase serum levels. Altogether, this study revealed that it is possible to replace FM with MBM up to 28% (180 g/kg of FM) without negative effects on the growth and health of juvenile oscar as dietary 110 g/kg of FM impaired fish health. While fish welfare should be considered, we can conclude that mild stress (2Stress) during the farming period, but without adding excessive alternative protein sources, can improve the stress responsiveness of oscar.
Department of Fisheries Faculty of Marine Science Tarbiat Modares University Noor 4641776489 Iran
Institute for Marine and Antarctic Studies University of Tasmania Hobart TAS 7053 Australia
Nelson Marlborough Institute of Technology 322 Hardy Street Private Bag 19 Nelson 7010 New Zealand
Zobrazit více v PubMed
Ghosi Mobaraki M.R., Abedian Kenari A., Bahrami Gorji S., Esmaeili M. Effect of dietary fish and vegetable oil on the growth performance, body composition, fatty acids profile, reproductive performance and larval resistance in pearl gourami (Trichogaster leeri) Aquac. Nutr. 2020;26:894–907. doi: 10.1111/anu.13048. DOI
Esmaeili M., Hosseini H., Zare M., Sobhan R.A., Rombenso A. Early Mild Stress along with Lipid Improves the Stress Responsiveness of Oscar (Astronotus ocellatus) Aquac. Nutr. 2022;2022:8991678. doi: 10.1155/2022/8991678. PubMed DOI PMC
Roohani A.M., Abedian Kenari A., Fallahi Kapoorchali M., Borani M.S., Zoriezahra S.J., Smiley A.H., Esmaeili M., Rombenso A.N. Effect of spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquac. Nutr. 2019;25:633–645.
Zaretabar A., Ouraji H., Kenari A.A., Yeganeh S., Esmaeili M., Amirkolaee A.K. One step toward aquaculture sustainability of a carnivorous species: Fish meal replacement with barley protein concentrate plus wheat gluten meal in Caspian brown trout (Salmo trutta caspius) Aquac. Rep. 2021;20:100714. doi: 10.1016/j.aqrep.2021.100714. DOI
Hua K. A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture. 2021;530:735732. doi: 10.1016/j.aquaculture.2020.735732. DOI
Zhang Q., Liang H., Longshaw M., Wang J., Ge X., Zhu J., Li S., Ren M. Effects of replacing fishmeal with methanotroph (Methylococcus capsulatus, Bath) bacteria meal (FeedKind®) on growth and intestinal health status of juvenile largemouth bass (Micropterus salmoides) Fish Shellfish Immunol. 2022;122:298–305. doi: 10.1016/j.fsi.2022.02.008. PubMed DOI
Luthada-Raswiswi R., Mukaratirwa S., O’Brien G. Animal protein sources as a substitute for fishmeal in aquaculture diets: A systematic review and meta-analysis. Appl. Sci. 2021;11:3854. doi: 10.3390/app11093854. DOI
Daniel N. A review on replacing fish meal in aqua feeds using plant protein sources. Int. J. Fish. Aquat. 2018;6:164–179.
Hodar A., Vasava R., Mahavadiya D., Joshi N. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: A review. J. Exp. Zool. India. 2020;23:13–21.
Shukla A., Munish K., Gyandeep G., Neeraj P., Varun M. A review on replacing fish meal in aqua feeds using plant and animal protein sources. Int. J. Chem. Stud. 2019;7:4732–4739.
Oliva-Teles A., Enes P., Couto A., Peres H. Replacing fish meal and fish oil in industrial fish feeds. Feed. Feed. Pract. Aquac. 2022;1:231–268.
Mugwanya M., Dawood M.A., Kimera F., Sewilam H. Replacement of fish meal with fermented plant proteins in the aquafeed industry: A systematic review and meta-analysis. Rev. Aquac. 2022;15:62–88. doi: 10.1111/raq.12701. DOI
Ai Q., Mai K., Tan B., Xu W., Duan Q., Ma H., Zhang L. Replacement of fish meal by meat and bone meal in diets for large yellow croaker, Pseudosciaena crocea. Aquaculture. 2006;260:255–263. doi: 10.1016/j.aquaculture.2006.06.043. DOI
Esmaeili M., Abedian Kenari A., Rombenso A. Effects of fish meal replacement with meat and bone meal using garlic (Allium sativum) powder on growth, feeding, digestive enzymes and apparent digestibility of nutrients and fatty acids in juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792) Aquac. Nutr. 2017;23:1225–1234. doi: 10.1111/anu.12491. DOI
Tacon A. Utilization of conventional and unconventional protein sources in practical fish feed. A review. Nutr. Feed. Fish. 1985
Hu M., Wang Y., Wang Q., Zhao M., Xiong B., Qian X., Zhao Y., Luo Z. Replacement of fish meal by rendered animal protein ingredients with lysine and methionine supplementation to practical diets for gibel carp, Carassius auratus gibelio. Aquaculture. 2008;275:260–265. doi: 10.1016/j.aquaculture.2008.01.005. DOI
Madaro A., Olsen R.E., Kristiansen T.S., Ebbesson L.O., Nilsen T.O., Flik G., Gorissen M. Stress in Atlantic salmon: Response to unpredictable chronic stress. J. Exp. Biol. 2015;218:2538–2550. doi: 10.1242/jeb.120535. PubMed DOI
Vindas M.A., Madaro A., Fraser T.W., Höglund E., Olsen R.E., Øverli Ø., Kristiansen T.S. Coping with a changing environment: The effects of early life stress. R. Soc. Open Sci. 2016;3:160382. doi: 10.1098/rsos.160382. PubMed DOI PMC
Auperin B., Geslin M. Plasma cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg cortisol content. Gen. Comp. Endocrinol. 2008;158:234–239. doi: 10.1016/j.ygcen.2008.07.002. PubMed DOI
Zare M., Esmaeili M., Hosseini H., Akhavan S., Rombenso A. How do optimum dietary protein and early mild stress events prepare fish for a stressful future? Stress responsiveness of oscar (Astronotus ocellatus) Aquac. Nutr. 2022;2022:8991678. PubMed PMC
Hosseinpour Aghaei R., Abedian Kenari A., Yazdani Sadati M.A., Esmaeili M. The effect of time-dependent protein restriction on growth factors, nonspecific immunity, body composition, fatty acids and amino acids in the Siberian sturgeon (Acipenser baerii) Aquac. Res. 2018;49:3033–3044. doi: 10.1111/are.13764. DOI
Esmaeili M., Abedian Kenari A., Rombenso A. Immunohematological status under acute ammonia stress of juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fed garlic (Allium sativum) powder-supplemented meat and bone meal-based feeds. Comp Clin Path. 2017;26:853–866. doi: 10.1007/s00580-017-2457-8. DOI
AOAC . Official Methods of Analysis of the AOAC International. Volume 18 The Association; Mission Viejo, CA, USA: 2000.
Aksnes A., Opstvedt J. Content of digestible energy in fish feed ingredients determined by the ingredient-substitution method. Aquaculture. 1998;161:45–53. doi: 10.1016/S0044-8486(97)00255-X. DOI
NRC . National Research Council, Nutrient Requirements of Fish and Shrimp. The National Academies Press; Washington, DC, USA: 2011.
Kenari A.A., Mahmoudi N., Soltani M., Abediankenari S. Dietary nucleotide supplements influence the growth, haemato-immunological parameters and stress responses in endangered Caspian brown trout (Salmo trutta caspius Kessler, 1877) Aquac. Nutr. 2013;19:54–63. doi: 10.1111/j.1365-2095.2012.00938.x. DOI
Řehulka J., Minařík B., Řehulková E. Red blood cell indices of rainbow trout Oncorhynchus mykiss (Walbaum) in aquaculture. Aquac. Res. 2004;35:529–546. doi: 10.1111/j.1365-2109.2004.01035.x. DOI
Wintrobe M. The volume and hemoglobin content of the red blood corpuscle: Simple method of calculation, normal findings, and value of such calculations in the anemias. Am. J. Med. Sci. 1929;177:513–522. doi: 10.1097/00000441-192904000-00006. DOI
Esmaeili M. Blood Performance: A New Formula for Fish Growth and Health. Biology. 2021;10:1236. doi: 10.3390/biology10121236. PubMed DOI PMC
Clerton P., Troutaud D., Verlhac V., Gabaudan J., Deschaux P. Dietary vitamin E and rainbow trout (Oncorhynchus mykiss) phagocyte functions: Effect on gut and on head kidney leucocytes. Fish Shellfish Immunol. 2001;11:1–13. doi: 10.1006/fsim.2000.0287. PubMed DOI
Amar E.C., Kiron V., Satoh S., Okamoto N., Watanabe T. Effects of dietary β-carotene on the immune response of rainbow trout Oncorhynchus mykiss. Fish Sci. 2000;66:1068–1075. doi: 10.1046/j.1444-2906.2000.00170.x. DOI
Hosseini H., Pooyanmehr M., Foroughi A., Esmaeili M., Ghiasi F., Lorestany R. Remarkable positive effects of figwort (Scrophularia striata) on improving growth performance, and immunohematological parameters of fish. Fish Shellfish Immunol. 2022;120:111–121. doi: 10.1016/j.fsi.2021.11.020. PubMed DOI
Asgari M., Abedian Kenari A., Esmaeili M., Rombenso A. Effects of hydroalcoholic extract of honeybee pollen on growth performance, flesh quality, and immune and stress response response of rainbow trout (Oncorhynchus mykiss) Aquac. Nutr. 2020;26:1505–1519. doi: 10.1111/anu.13098. DOI
FAO . Sustainability in Action. The Food and Agriculture Organization of the United Nations; Rome, Italy: 2020. The State of World Fisheries and Aquaculture. DOI
Monica Joicy C., Navitha A.P., Sivaraj C. Studies on effect of marine macro algae Enteromorpha intestinalis as skin color enhancer and as an alternative for fish meal in feed supplemented to ornamental fishes. Int. J. Fish. Aquat. 2021;9:201–205.
Tu N.P.C., Ha N.N., Linh N.T.T., Tri N.N. Effect of astaxanthin and spirulina levels in black soldier fly larvae meal-based diets on growth performance and skin pigmentation in discus fish, Symphysodon sp. Aquaculture. 2022;553:738048. doi: 10.1016/j.aquaculture.2022.738048. DOI
Sultana R., Khatoon H., Rahman M.R., Haque M.E., Nayma Z., Mukta F.A. Potentiality of Nannochloropsis sp. as partial dietary replacement of fishmeal on growth, proximate composition, pigment and breeding performance in guppy (Poecilia reticulata) Bioresour. Technol. Rep. 2022;18:101112. doi: 10.1016/j.biteb.2022.101112. DOI
Nishshanka K.M., Radampola K., Bulugahapitiya V. Effects of partial replacement of dietary fishmeal using plant-protein sources on the growth performance, coloration and liver histology of guppy fry (Poecilia reticulata) in outdoor farming conditions. J. Appl. Aquac. 2021;34:715–733. doi: 10.1080/10454438.2021.1886216. DOI
Chong A., Hashim R., Ali A.b. Assessment of soybean meal in diets for discus (Symphysodon aequifasciata HECKEL) farming through a fishmeal replacement study. Aquac. Res. 2003;34:913–922. doi: 10.1046/j.1365-2109.2003.00945.x. DOI
Khanzadeh M., Esmaeili Fereidouni A., Seifi Berenjestanaki S. Effects of partial replacement of fish meal with Spirulina platensis meal in practical diets on growth, survival, body composition, and reproductive performance of three-spot gourami (Trichopodus trichopterus) (Pallas, 1770) Aquac. Int. 2016;24:69–84. doi: 10.1007/s10499-015-9909-4. DOI
Zhang M., Wang S., Gan L., Lin Y., Shao J., Jiang H., Li M. Effects of fishmeal replacement with eight protein sources on growth performance, blood biochemistry and stress resistance in Opsariichthys bidens. Aquac. Nutr. 2021;27:2529–2540. doi: 10.1111/anu.13382. DOI
Hossain M., Koshio S., Ishikawa M., Yokoyama S., Sony N.M., Islam M. Fishmeal replacement by soya protein concentrate with inosine monophosphate supplementation influences growth, digestibility, immunity, blood health, and stress resistance of red sea bream, Pagrus major. Fish Physiol. Biochem. 2019;45:613–629. doi: 10.1007/s10695-018-0581-2. PubMed DOI
Bu X., Chen A., Lian X., Chen F., Zhang Y., Muhammad I., Ge X., Yang Y. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: Growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila. Aquaculture. 2017;479:829–837. doi: 10.1016/j.aquaculture.2017.07.032. DOI
Zhang X., Sun Z., Cai J., Wang J., Wang G., Zhu Z., Cao F. Effects of dietary fish meal replacement by fermented moringa (Moringa oleifera Lam.) leaves on growth performance, nonspecific immunity and disease resistance against Aeromonas hydrophila in juvenile gibel carp (Carassius auratus gibelio var. CAS III) Fish Shellfish Immunol. 2020;102:430–439. doi: 10.1016/j.fsi.2020.04.051. PubMed DOI
Shearer K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture. 1994;119:63–88. doi: 10.1016/0044-8486(94)90444-8. DOI
Moutinho S., Martínez-Llorens S., Tomás-Vidal A., Jover-Cerdá M., Oliva-Teles A., Peres H. Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: Growth, feed efficiency, amino acid utilisation, and economic efficiency. Aquaculture. 2017;468:271–277. doi: 10.1016/j.aquaculture.2016.10.024. DOI
Yu H., Zhang Q., Cao H., Tong T., Huang G., Li W. Replacement of fish meal by meat and bone meal in diets for juvenile snakehead Ophiocephalus argus. Fish Sci. 2015;81:723–729. doi: 10.1007/s12562-015-0871-x. DOI
Hernández C., González-Santos A., Valverde-Romero M., González-Rodríguez B., Domínguez-Jiménez P. Partial replacement of fishmeal with meat and bone meal and tuna byproducts meal in practical diets for juvenile spotted rose snapper Lutjanus guttatus. Lat. Am. J. Aquat. Res. 2016;44:56–64. doi: 10.3856/vol44-issue1-fulltext-6. DOI
Kim J., Cho S.H., Kim T., Hur S.W. Substitution effect of fish meal with various sources of animal by-product meals in feed on growth, feed utilisation, body composition, haematology and non-specific immune response of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846) Aquac. Res. 2021;52:2802–2817.
Ghanbary K., Firouzbakhsh F., Arkan E., Mojarrab M. The effect of Thymbra spicata hydroalcoholic extract loaded on chitosan polymeric nanoparticles on some growth performances, hematology, immunity, and response to acute stress in rainbow trout (Oncorhynchus mykiss) Aquaculture. 2022;548:737568. doi: 10.1016/j.aquaculture.2021.737568. DOI
Carson J.A.S., Lichtenstein A.H., Anderson C.A., Appel L.J., Kris-Etherton P.M., Meyer K.A., Petersen K., Polonsky T., Van Horn L. Dietary cholesterol and cardiovascular risk: A science advisory from the American Heart Association. Circulation. 2020;141:e39–e53. doi: 10.1161/CIR.0000000000000743. PubMed DOI
Ye J., Liu X., Wang Z., Wang K. Effect of partial fish meal replacement by soybean meal on the growth performance and biochemical indices of juvenile Japanese flounder Paralichthys olivaceus. Aquac. Int. 2011;19:143–153. doi: 10.1007/s10499-010-9348-1. DOI
Wang Z., Qian X., Xie S., Yun B. Changes of growth performance and plasma biochemical parameters of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) in response to substitution of dietary fishmeal with poultry by-product meal. Aquac. Rep. 2020;18:100516. doi: 10.1016/j.aqrep.2020.100516. DOI
Khieokhajonkhet A., Aeksiri N., Rojtinnakorn J., Van Doan H., Kaneko G. Sacha inchi meal as a fish-meal replacer in red hybrid tilapia (Oreochromis niloticus × O. mossambicus) feeds: Effects on dietary digestibility, growth metrics, hematology, and liver and intestinal histology. Aquac. Int. 2022;30:677–698. doi: 10.1007/s10499-022-00833-7. DOI
Zhao X., Wang Y., Wang X., Ye J. Growth performance, plasma components, and intestinal barrier in grouper (Epinephelus coioides) are altered by dietary fish meal replacement with extruded soybean meal. Aquac. Rep. 2021;21:100863. doi: 10.1016/j.aqrep.2021.100863. DOI
Montazeri H., Abedian Kenari A., Esmaeili M. Soybean-based diets plus probiotics improve the profile of fatty acids, digestibility, intestinal microflora, growth performance, and the innate immunity of beluga (Huso huso) Aquac. Res. 2021;52:152–166. doi: 10.1111/are.14877. DOI
Ravardshiri M., Bahram S., Javadian S.R., Bahrekazemi M. Cinnamon Promotes Growth Performance, Digestive Enzyme, Blood Parameters, and Antioxidant Activity of Rainbow Trout (Oncorhynchus mykiss) in Low-Carbohydrate Diets. Turkish J. Fish. Aquat. Sci. 2021;21:309–322. doi: 10.4194/1303-2712-v21_7_01. PubMed DOI
Mayer E.A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci. 2011;12:453–466. doi: 10.1038/nrn3071. PubMed DOI PMC
Wang J., Liang D., Yang Q., Tan B., Dong X., Chi S., Liu H., Zhang S. The effect of partial replacement of fish meal by soy protein concentrate on growth performance, immune responses, gut morphology and intestinal inflammation for juvenile hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂) Fish Shellfish Immunol. 2020;98:619–631. doi: 10.1016/j.fsi.2019.10.025. PubMed DOI
Pottinger T. Changes in blood cortisol, glucose and lactate in carp retained in anglers’ keepnets. J. Fish Biol. 1998;53:728–742. doi: 10.1006/jfbi.1998.0737. DOI
Busti S., Bonaldo A., Dondi F., Cavallini D., Yúfera M., Gilannejad N., Moyano F.J., Gatta P.P., Parma L. Effects of different feeding frequencies on growth, feed utilisation, digestive enzyme activities and plasma biochemistry of gilthead sea bream (Sparus aurata) fed with different fishmeal and fish oil dietary levels. Aquaculture. 2020;529:735616. doi: 10.1016/j.aquaculture.2020.735616. DOI
Kader M.A., Bulbul M., Koshio S., Ishikawa M., Yokoyama S., Nguyen B.T., Komilus C.F. Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture. 2012;350:109–116. doi: 10.1016/j.aquaculture.2012.04.009. DOI
Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquac. 2020;29:198–217. doi: 10.1080/23308249.2020.1795616. DOI
Song S.G., Chi S.Y., Tan B.P., Liang G.L., Lu B.Q., Dong X.H., Yang Q.H., Liu H.Y., Zhang S. Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) Aquac. Res. 2018;49:2210–2217. doi: 10.1111/are.13677. DOI
Wang Y., Tao S., Liao Y., Lian X., Luo C., Zhang Y., Yang C., Cui C., Yang J., Yang Y. Partial fishmeal replacement by mussel meal or meat and bone meal in low-fishmeal diets for juvenile Ussuri catfish (Pseudobagrus ussuriensis): Growth, digestibility, antioxidant capacity and IGF-I gene expression. Aquac. Nutr. 2020;26:727–736. doi: 10.1111/anu.13032. DOI
Twahirwa I., Wu C., Ye J., Zhou Q. The effect of dietary fish meal replacement with blood meal on growth performance, metabolic activities, antioxidant and innate immune responses of fingerlings black carp, Mylopharyngodon piceus. Aquac. Res. 2021;52:702–714. doi: 10.1111/are.14927. DOI
Ji H., Zhang J.L., Huang J.Q., Cheng X.F., Liu C. Effect of replacement of dietary fish meal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in juvenile Jian carp (Cyprinus carpio var. Jian) Aquac. Res. 2015;46:1209–1221. doi: 10.1111/are.12276. DOI
Hu Y., Huang Y., Tang T., Zhong L., Chu W., Dai Z., Chen K., Hu Y. Effect of partial black soldier fly (Hermetia illucens L.) larvae meal replacement of fish meal in practical diets on the growth, digestive enzyme and related gene expression for rice field eel (Monopterus albus) Aquac. Rep. 2020;17:100345. doi: 10.1016/j.aqrep.2020.100345. DOI
Liao H., Liu P., Deng Y., Zhang W., Pan C., Jia Y., Long F., Tang H. Feeding effects of low-level fish meal replacement by algal meals of Schizochytrium limacinum and Nannochloropsis salina on largemouth bass (Micropterus salmoides) Aquaculture. 2022;557:738311. doi: 10.1016/j.aquaculture.2022.738311. DOI
Ramezanzadeh S., Abedian Kenari A., Esmaeili M. Immunohematological parameters of rainbow trout (Oncorhynchus mykiss) fed supplemented diet with different forms of barberry root (Berberis vulgaris) Comp Clin Path. 2020;29:177–187. doi: 10.1007/s00580-019-03032-8. DOI
Ramezanzadeh s., Abedian Kenari A., Esmaeili M., Rombenso A. Effects of different forms of barberry root (Berberis vulgaris) on growth performance, muscle fatty acids profile, whole-body composition, and digestive enzymes of rainbow trout (Oncorhynchus mykiss) J. World Aquac. Soc. 2021;52:284–302. doi: 10.1111/jwas.12722. DOI
Zeilab Sendijani R., Abedian Kenari A., Smiley A.H., Esmaeili M. The effect of extract from dill (Anethum graveolens) on the growth performance, body composition, immune system and antioxidant system of Rainbow Trout (Oncorhynchus mykiss). N. Am. J. Aquac. 2020;82:119–131. doi: 10.1002/naaq.10123. DOI
Zhao Z.-X., Song C.-Y., Xie J., Ge X.-P., Liu B., Xia S.-L., Yang S., Wang Q., Zhu S.-H. Effects of fish meal replacement by soybean peptide on growth performance, digestive enzyme activities, and immune responses of yellow catfish Pelteobagrus fulvidraco. Fish Sci. 2016;82:665–673. doi: 10.1007/s12562-016-0996-6. DOI
Lim S.-J., Kim S.-S., Ko G.-Y., Song J.-W., Oh D.-H., Kim J.-D., Kim J.-U., Lee K.-J. Fish meal replacement by soybean meal in diets for Tiger puffer, Takifugu rubripes. Aquaculture. 2011;313:165–170. doi: 10.1016/j.aquaculture.2011.01.007. DOI
Chen Y., Sagada G., Xu B., Chao W., Zou F., Ng W.K., Sun Y., Wang L., Zhong Z., Shao Q. Partial replacement of fishmeal with Clostridium autoethanogenum single-cell protein in the diet for juvenile black sea bream (Acanthopagrus schlegelii) Aquac. Res. 2020;51:1000–1011. doi: 10.1111/are.14446. DOI
Yu M., Li Z., Chen W., Rong T., Wang G., Wang F., Ma X. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. Anim. Feed Sci. Technol. 2020;264:114431. doi: 10.1016/j.anifeedsci.2020.114431. DOI
Hassaan M., El-Sayed A., Soltan M., Iraqi M., Goda A., Davies S., El-Haroun E., Ramadan H. Partial dietary fish meal replacement with cotton seed meal and supplementation with exogenous protease alters growth, feed performance, hematological indices and associated gene expression markers (GH, IGF-I) for Nile tilapia, Oreochromis niloticus. Aquaculture. 2019;503:282–292. doi: 10.1016/j.aquaculture.2019.01.009. DOI
Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Kołodziejski P., Pruszyńska-Oszmałek E., Józefiak D. The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement. Animal. 2022;16:100516. doi: 10.1016/j.animal.2022.100516. PubMed DOI
Madibana M.J., Mwanza M., Lewis B.R., Fouché C.H., Toefy R., Mlambo V. Black soldier fly larvae meal as a fishmeal substitute in juvenile dusky kob diets: Effect on feed utilisation, growth performance, and blood parameters. Sustainability. 2020;12:9460. doi: 10.3390/su12229460. DOI
Tejpal C., Pal A., Sahu N., Kumar J.A., Muthappa N., Vidya S., Rajan M. Dietary supplementation of L-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings. Aquaculture. 2009;293:272–277. doi: 10.1016/j.aquaculture.2008.09.014. DOI
Liu F., Shi H.-Z., Guo Q.-S., Yu Y.-B., Wang A.-M., Lv F., Shen W.-B. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco) Fish Shellfish Immunol. 2016;51:125–135. doi: 10.1016/j.fsi.2016.02.020. PubMed DOI
Dawood M.A., Gewaily M.S., Monier M.N., Younis E.M., Van Doan H., Sewilam H. The regulatory roles of yucca extract on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture. 2021;534:736287. doi: 10.1016/j.aquaculture.2020.736287. DOI
Sun Z., Tan X., Liu Q., Ye H., Zou C., Xu M., Zhang Y., Ye C. Physiological, immune responses and liver lipid metabolism of orange-spotted grouper (Epinephelus coioides) under cold stress. Aquaculture. 2019;498:545–555. doi: 10.1016/j.aquaculture.2018.08.051. DOI
Hoseini S.M., Gupta S.K., Yousefi M., Kulikov E.V., Drukovsky S.G., Petrov A.K., Mirghaed A.T., Hoseinifar S.H., Van Doan H. Mitigation of transportation stress in common carp, Cyprinus carpio, by dietary administration of turmeric. Aquaculture. 2022;564:737380. doi: 10.1016/j.aquaculture.2021.737380. DOI