The DNA methylome of cervical cells can predict the presence of ovarian cancer

. 2022 Feb 01 ; 13 (1) : 448. [epub] 20220201

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35105887
Odkazy

PubMed 35105887
PubMed Central PMC8807742
DOI 10.1038/s41467-021-26615-y
PII: 10.1038/s41467-021-26615-y
Knihovny.cz E-zdroje

The vast majority of epithelial ovarian cancer arises from tissues that are embryologically derived from the Müllerian Duct. Here, we demonstrate that a DNA methylation signature in easy-to-access Müllerian Duct-derived cervical cells from women with and without ovarian cancer (i.e. referred to as the Women's risk IDentification for Ovarian Cancer index or WID-OC-index) is capable of identifying women with an ovarian cancer in the absence of tumour DNA with an AUC of 0.76 and women with an endometrial cancer with an AUC of 0.81. This and the observation that the cervical cell WID-OC-index mimics the epigenetic program of those cells at risk of becoming cancerous in BRCA1/2 germline mutation carriers (i.e. mammary epithelium, fallopian tube fimbriae, prostate) further suggest that the epigenetic misprogramming of cervical cells is an indicator for cancer predisposition. This concept has the potential to advance the field of risk-stratified cancer screening and prevention.

Zobrazit více v PubMed

Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–1388. doi: 10.1016/S0140-6736(13)62146-7. PubMed DOI

Clyde MA, et al. Risk prediction for epithelial ovarian cancer in 11 United States-based case-control studies: incorporation of epidemiologic risk factors and 17 confirmed genetic loci. Am. J. Epidemiol. 2016;184:579–589. doi: 10.1093/aje/kww091. PubMed DOI PMC

Yang X, et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J. Med. Genet. 2018;55:546–554. doi: 10.1136/jmedgenet-2018-105313. PubMed DOI PMC

Pearce CL, et al. Population distribution of lifetime risk of ovarian cancer in the United States. Cancer Epidemiol. Biomark. Prev. 2015;24:671–676. doi: 10.1158/1055-9965.EPI-14-1128. PubMed DOI PMC

Jervis S, et al. A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects. J. Med. Genet. 2015;52:465–475. doi: 10.1136/jmedgenet-2015-103077. PubMed DOI PMC

Jacobs IJ, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet. 2016;387:945–956. doi: 10.1016/S0140-6736(15)01224-6. PubMed DOI PMC

Rosenthal AN, et al. Evidence of stage shift in women diagnosed with ovarian cancer during Phase II of the United Kingdom familial ovarian cancer screening study. J. Clin. Oncol. 2017;35:1411–1420. doi: 10.1200/JCO.2016.69.9330. PubMed DOI PMC

Hartmann LC, Lindor NM. The role of risk-reducing surgery in hereditary breast and ovarian cancer. N. Engl. J. Med. 2016;374:454–468. doi: 10.1056/NEJMra1503523. PubMed DOI

Wang, Y. et al. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers. Sci. Transl. Med.10, eaap8793 (2018). PubMed PMC

Lac V, et al. Oncogenic mutations in histologically normal endometrium: the new normal? J. Pathol. 2019;249:173–181. doi: 10.1002/path.5314. PubMed DOI

Salk JJ, et al. Ultra-sensitive TP53 sequencing for cancer detection reveals progressive clonal selection in normal tissue over a century of human lifespan. Cell Rep. 2019;28:132–144 e3. doi: 10.1016/j.celrep.2019.05.109. PubMed DOI PMC

Nair N, et al. Genomic analysis of uterine lavage fluid detects early endometrial cancers and reveals a prevalent landscape of driver mutations in women without histopathologic evidence of cancer: a prospective cross-sectional study. PLoS Med. 2016;13:e1002206. doi: 10.1371/journal.pmed.1002206. PubMed DOI PMC

Moore L, et al. The mutational landscape of normal human endometrial epithelium. Nature. 2020;580:640–646. doi: 10.1038/s41586-020-2214-z. PubMed DOI

Bartlett TE, et al. Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution. Nat. Commun. 2016;7:11620. doi: 10.1038/ncomms11620. PubMed DOI PMC

Lichtenstein P, et al. Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 2000;343:78–85. doi: 10.1056/NEJM200007133430201. PubMed DOI

Koestler DC, et al. Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer. BMC Med. Genomics. 2014;7:8. doi: 10.1186/1755-8794-7-8. PubMed DOI PMC

Winham SJ, et al. Genome-wide investigation of regional blood-based DNA methylation adjusted for complete blood counts implicates BNC2 in ovarian cancer. Genet. Epidemiol. 2014;38:457–466. doi: 10.1002/gepi.21815. PubMed DOI PMC

Yang, Y. et al. Genetic data from nearly 63,000 women of European descent predicts DNA methylation biomarkers and epithelial ovarian cancer risk. Cancer Res. (2018). PubMed PMC

Widschwendter, M. et al. Epigenome-based cancer risk prediction: rationale, opportunities and challenges. Nat. Rev. Clin. Oncol.15, 292–309 (2018). PubMed

Dubeau L, Drapkin R. Coming into focus: the nonovarian origins of ovarian cancer. Ann. Oncol. 2013;24:viii28–viii35. doi: 10.1093/annonc/mdt308. PubMed DOI PMC

Pidsley R, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17:208. doi: 10.1186/s13059-016-1066-1. PubMed DOI PMC

Teschendorff AE, et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS ONE. 2009;4:e8274. doi: 10.1371/journal.pone.0008274. PubMed DOI PMC

Zheng, S. C. et al. A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. Epigenomics10, 925–940 (2018). PubMed

Hartmann LC, Lindor NM. Risk-reducing surgery in hereditary breast and ovarian cancer. N. Engl. J. Med. 2016;374:2404. doi: 10.1056/NEJMra1503523. PubMed DOI

Widschwendter M, et al. The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer. Genome Med. 2017;9:116. doi: 10.1186/s13073-017-0500-7. PubMed DOI PMC

Margolin G, et al. Robust detection of DNA hypermethylation of ZNF154 as a Pan-cancer locus with in silico modeling for blood-based diagnostic development. J. Mol. Diagn. 2016;18:283–298. doi: 10.1016/j.jmoldx.2015.11.004. PubMed DOI PMC

Kilaru V, et al. Critical evaluation of copy number variant calling methods using DNA methylation. Genet. Epidemiol. 2020;44:148–158. doi: 10.1002/gepi.22269. PubMed DOI PMC

Davis CA, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46:D794–D801. doi: 10.1093/nar/gkx1081. PubMed DOI PMC

Jonsson P, et al. Tumour lineage shapes BRCA-mediated phenotypes. Nature. 2019;571:576–579. doi: 10.1038/s41586-019-1382-1. PubMed DOI PMC

Cheng W, Liu J, Yoshida H, Rosen D, Naora H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat. Med. 2005;11:531–537. doi: 10.1038/nm1230. PubMed DOI

Mellemkjaer L, et al. Risk of primary non-breast cancer after female breast cancer by age at diagnosis. Cancer Epidemiol. Biomark. Prev. 2011;20:1784–1792. doi: 10.1158/1055-9965.EPI-11-0009. PubMed DOI

Trinh BN, Long TI, Laird PW. DNA methylation analysis by MethyLight technology. Methods. 2001;25:456–462. doi: 10.1006/meth.2001.1268. PubMed DOI

Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45:e22. PubMed PMC

Hovestadt, V. & Zapatka, M. Conumee: Enhanced copy-number variation analysis using Illumina DNA methylation arrays. R package version 1.9.0, http://bioconductor.org/packages/conumee/. PubMed PMC

Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Manichaikul A, et al. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–2873. doi: 10.1093/bioinformatics/btq559. PubMed DOI PMC

Das S, et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016;48:1284–1287. doi: 10.1038/ng.3656. PubMed DOI PMC

Phelan CM, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 2017;49:680–691. doi: 10.1038/ng.3826. PubMed DOI PMC

Buniello A, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–D1012. doi: 10.1093/nar/gky1120. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...