The H3.3 chaperone Hira complex orchestrates oocyte developmental competence

. 2022 Mar 01 ; 149 (5) : . [epub] 20220228

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid35112132

Grantová podpora
Wellcome Trust - United Kingdom
MR/N022556/1 Medical Research Council - United Kingdom
R01 HD102533 NICHD NIH HHS - United States

Successful reproduction requires an oocyte competent to sustain early embryo development. By the end of oogenesis, the oocyte has entered a transcriptionally silenced state, the mechanisms and significance of which remain poorly understood. Histone H3.3, a histone H3 variant, has unique cell cycle-independent functions in chromatin structure and gene expression. Here, we have characterised the H3.3 chaperone Hira/Cabin1/Ubn1 complex, showing that loss of function of any of these subunits causes early embryogenesis failure in mouse. Transcriptome and nascent RNA analyses revealed that transcription is aberrantly silenced in mutant oocytes. Histone marks, including H3K4me3 and H3K9me3, are reduced and chromatin accessibility is impaired in Hira/Cabin1 mutants. Misregulated genes in mutant oocytes include Zscan4d, a two-cell specific gene involved in zygote genome activation. Overexpression of Zscan4 in the oocyte partially recapitulates the phenotypes of Hira mutants and Zscan4 knockdown in Cabin1 mutant oocytes partially restored their developmental potential, illustrating that temporal and spatial expression of Zscan4 is fine-tuned at the oocyte-to-embryo transition. Thus, the H3.3 chaperone Hira complex has a maternal effect function in oocyte developmental competence and embryogenesis, through modulating chromatin condensation and transcriptional quiescence.

Zobrazit více v PubMed

Ahmed, K., Dehghani, H., Rugg-Gunn, P., Fussner, E., Rossant, J. and Bazett-Jones, D. P. (2010). Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PubMed DOI PMC

Amano, T., Hirata, T., Falco, G., Monti, M., Sharova, L. V., Amano, M., Sheer, S., Hoang, H. G., Piao, Y., Stagg, C. A.et al. (2013). Zscan4 restores the developmental potency of embryonic stem cells. PubMed DOI PMC

Ancelin, K., Syx, L., Borensztein, M., Ranisavljevic, N., Vassilev, I., Briseno-Roa, L., Liu, T., Metzger, E., Servant, N., Barillot, E.et al. (2016). Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. PubMed DOI PMC

Andreu-Vieyra, C. V., Chen, R., Agno, J. E., Glaser, S., Anastassiadis, K., Stewart, A. F. and Matzuk, M. M. (2010). MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PubMed DOI PMC

Banaszynski, L. A., Wen, D., Dewell, S., Whitcomb, S. J., Lin, M., Diaz, N., Elsasser, S. J., Chapgier, A., Goldberg, A. D., Canaani, E.et al. (2013). Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. PubMed DOI PMC

Bouniol-Baly, C., Hamraoui, L., Guibert, J., Beaujean, N., Szollosi, M. S. and Debey, P. (1999). Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. PubMed DOI

Bultman, S. J., Gebuhr, T. C., Pan, H., Svoboda, P., Schultz, R. M. and Magnuson, T. (2006). Maternal BRG1 regulates zygotic genome activation in the mouse. PubMed DOI PMC

Conti, M. and Franciosi, F. (2018). Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. PubMed DOI PMC

Dahl, J. A., Jung, I., Aanes, H., Greggains, G. D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A. Y.et al. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. PubMed DOI PMC

Dan, J., Liu, Y., Liu, N., Chiourea, M., Okuka, M., Wu, T., Ye, X., Mou, C., Wang, L., Wang, L.et al. (2014). Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. PubMed DOI PMC

De Iaco, A., Planet, E., Coluccio, A., Verp, S., Duc, J. and Trono, D. (2017). DUX-family transcription factors regulate zygotic genome activation in placental mammals. PubMed DOI PMC

De La Fuente, R. and Eppig, J. J. (2001). Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. PubMed DOI

De La Fuente, R., Viveiros, M. M., Burns, K. H., Adashi, E. Y., Matzuk, M. M. and Eppig, J. J. (2004). Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. PubMed DOI

de Vries, W. N., Binns, L. T., Fancher, K. S., Dean, J., Moore, R., Kemler, R. and Knowles, B. B. (2000). Expression of Cre recombinase in mouse oocytes: A means to study maternal effect genes. PubMed DOI

Debey, P., Szollosi, M. S., Szollosi, D., Vautier, D., Girousse, A. and Besombes, D. (1993). Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. PubMed DOI

Dumdie, J. N., Cho, K., Ramaiah, M., Skarbrevik, D., Mora-Castilla, S., Stumpo, D. J., Lykke-Andersen, J., Laurent, L. C., Blackshear, P. J., Wilkinson, M. F.et al. (2018). Chromatin modification and global transcriptional silencing in the oocyte mediated by the mRNA decay activator ZFP36L2. PubMed DOI PMC

Esau, C., Boes, M., Youn, H. D., Tatterson, L., Liu, J. O. and Chen, J. (2001). Deletion of calcineurin and myocyte enhancer factor 2 (MEF2) binding domain of Cabin1 results in enhanced cytokine gene expression in T cells. PubMed DOI PMC

Falco, G., Lee, S. L., Stanghellini, I., Bassey, U. C., Hamatani, T. and Ko, M. S. (2007). Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. PubMed DOI PMC

Gassler, J., Flyamer, I. M. and Tachibana, K. (2018). Single-nucleus Hi-C of mammalian oocytes and zygotes. PubMed DOI

Hanna, C. W., Taudt, A., Huang, J., Gahurova, L., Kranz, A., Andrews, S., Dean, W., Stewart, A. F., Colome-Tatche, M. and Kelsey, G. (2018). MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. PubMed DOI

Huang, Y., Jiang, X., Yu, M., Huang, R., Yao, J., Li, M., Zheng, F. and Yang, X. (2017). Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos. PubMed DOI

Hung, S. S., Wong, R. C., Sharov, A. A., Nakatake, Y., Yu, H. and Ko, M. S. (2013). Repression of global protein synthesis by Eif1a-like genes that are expressed specifically in the two-cell embryos and the transient Zscan4-positive state of embryonic stem cells. PubMed DOI PMC

Inoue, A. and Zhang, Y. (2014). Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. PubMed DOI PMC

Ishiguro, K. I., Monti, M., Akiyama, T., Kimura, H., Chikazawa-Nohtomi, N., Sakota, M., Sato, S., Redi, C. A., Ko, S. B. H. and Ko, M. S. H. (2017). Zscan4 is expressed specifically during late meiotic prophase in both spermatogenesis and oogenesis. PubMed DOI PMC

Jang, H., Choi, D. E., Kim, H., Cho, E. J. and Youn, H. D. (2007). Cabin1 represses MEF2 transcriptional activity by association with a methyltransferase, SUV39H1. PubMed DOI

Karatas, H., Townsend, E. C., Cao, F., Chen, Y., Bernard, D., Liu, L., Lei, M., Dou, Y. and Wang, S. (2013). High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein-protein interaction. PubMed DOI PMC

Kim, J., Zhao, H., Dan, J., Kim, S., Hardikar, S., Hollowell, D., Lin, K., Lu, Y., Takata, Y., Shen, J.et al. (2016). Maternal Setdb1 is required for meiotic progression and preimplantation development in mouse. PubMed DOI PMC

Ko, M. S. H. (2016). Zygotic genome activation revisited: looking through the expression and function of Zscan4. PubMed DOI

Kubicek, S., O'Sullivan, R. J., August, E. M., Hickey, E. R., Zhang, Q., Teodoro, M. L., Rea, S., Mechtler, K., Kowalski, J. A., Homon, C. A.et al. (2007). Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. PubMed DOI

Li, L., Lu, X. and Dean, J. (2013). The maternal to zygotic transition in mammals. PubMed DOI PMC

Lin, C. J., Conti, M. and Ramalho-Santos, M. (2013). Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. PubMed DOI PMC

Lin, C. J., Koh, F. M., Wong, P., Conti, M. and Ramalho-Santos, M. (2014). Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. PubMed DOI PMC

Liu, H. and Aoki, F. (2002). Transcriptional activity associated with meiotic competence in fully grown mouse GV oocytes. PubMed DOI

Luciano, A. M., Franciosi, F., Dieci, C. and Lodde, V. (2014). Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. PubMed DOI

Ma, J.-Y., Li, M., Luo, Y.-B., Song, S., Tian, D., Yang, J., Zhang, B., Hou, Y., Schatten, H., Liu, Z.et al. (2013). Maternal factors required for oocyte developmental competence in mice: transcriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes. PubMed DOI PMC

Matoba, S., Liu, Y., Lu, F., Iwabuchi, K. A., Shen, L., Inoue, A. and Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. PubMed DOI PMC

Matsson, H., Davey, E. J., Draptchinskaia, N., Hamaguchi, I., Ooka, A., Leeven, P., Forsberg, E., Karlsson, S. and Dahl, N. (2004). Targeted disruption of the ribosomal protein S19 gene is lethal prior to implantation. PubMed DOI PMC

McGuinness, B. E., Anger, M., Kouznetsova, A., Gil-Bernabe, A. M., Helmhart, W., Kudo, N. R., Wuensche, A., Taylor, S., Hoog, C., Novak, B.et al. (2009). Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. PubMed DOI

Nashun, B., Hill, P. W., Smallwood, S. A., Dharmalingam, G., Amouroux, R., Clark, S. J., Sharma, V., Ndjetehe, E., Pelczar, P., Festenstein, R. J.et al. (2015). Continuous histone replacement by hira is essential for normal transcriptional regulation and De Novo DNA methylation during mouse oogenesis. PubMed DOI PMC

Navarro, C., Lyu, J., Katsori, A. M., Caridha, R. and Elsasser, S. J. (2020). An embryonic stem cell-specific heterochromatin state promotes core histone exchange in the absence of DNA accessibility. PubMed DOI PMC

Nestorov, P., Hotz, H. R., Liu, Z. and Peters, A. H. (2015). Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos. PubMed DOI PMC

Percharde, M., Lin, C. J., Yin, Y., Guan, J., Peixoto, G. A., Bulut-Karslioglu, A., Biechele, S., Huang, B., Shen, X. and Ramalho-Santos, M. (2018). A LINE1-nucleolin partnership regulates early development and ESC identity. PubMed DOI PMC

Posfai, E., Kunzmann, R., Brochard, V., Salvaing, J., Cabuy, E., Roloff, T. C., Liu, Z., Tardat, M., van Lohuizen, M., Vidal, M.et al. (2012). Polycomb function during oogenesis is required for mouse embryonic development. PubMed DOI PMC

Rai, T. S., Puri, A., McBryan, T., Hoffman, J., Tang, Y., Pchelintsev, N. A., van Tuyn, J., Marmorstein, R., Schultz, D. C. and Adams, P. D. (2011). Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. PubMed DOI PMC

Ray-Gallet, D., Ricketts, M. D., Sato, Y., Gupta, K., Boyarchuk, E., Senda, T., Marmorstein, R. and Almouzni, G. (2018). Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit. PubMed DOI PMC

Rodriguez-Terrones, D., Gaume, X., Ishiuchi, T., Weiss, A., Kopp, A., Kruse, K., Penning, A., Vaquerizas, J. M., Brino, L. and Torres-Padilla, M. E. (2018). A molecular roadmap for the emergence of early-embryonic-like cells in culture. PubMed DOI PMC

Schneiderman, J. I., Orsi, G. A., Hughes, K. T., Loppin, B. and Ahmad, K. (2012). Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. PubMed DOI PMC

Schultz, R. M., Stein, P. and Svoboda, P. (2018). The oocyte-to-embryo transition in mouse: past, present, and future. PubMed DOI PMC

Smith, R., Pickering, S. J., Kopakaki, A., Thong, K. J., Anderson, R. A. and Lin, C. J. (2021). HIRA contributes to zygote formation in mice and is implicated in human 1PN zygote phenotype. PubMed DOI PMC

Tanaka, M., Hennebold, J. D., Macfarlane, J. and Adashi, E. Y. (2001). A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. PubMed DOI

van der Heijden, G. W., Derijck, A. A., Posfai, E., Giele, M., Pelczar, P., Ramos, L., Wansink, D. G., van der Vlag, J., Peters, A. H. and de Boer, P. (2007). Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. PubMed DOI

Wen, D., Banaszynski, L. A., Rosenwaks, Z., Allis, C. D. and Rafii, S. (2014). H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. PubMed DOI

Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W.et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. PubMed DOI

Wu, J., Xu, J., Liu, B., Yao, G., Wang, P., Lin, Z., Huang, B., Wang, X., Li, T., Shi, S.et al. (2018). Chromatin analysis in human early development reveals epigenetic transition during ZGA. PubMed DOI

Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z.et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. PubMed DOI

Yeung, W. K. A., Brind'Amour, J., Hatano, Y., Yamagata, K., Feil, R., Lorincz, M. C., Tachibana, M., Shinkai, Y. and Sasaki, H. (2019). Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. PubMed DOI

Zalzman, M., Falco, G., Sharova, L. V., Nishiyama, A., Thomas, M., Lee, S. L., Stagg, C. A., Hoang, H. G., Yang, H. T., Indig, F. E.et al. (2010). Zscan4 regulates telomere elongation and genomic stability in ES cells. PubMed DOI PMC

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W.et al. (2008). Model-based analysis of ChIP-Seq (MACS). PubMed DOI PMC

Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q.et al. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. PubMed DOI

Zhang, Z., Zhai, Y., Ma, X., Zhang, S., An, X., Yu, H. and Li, Z. (2018). Down-regulation of H3K4me3 by MM-102 facilitates epigenetic reprogramming of porcine somatic cell nuclear transfer embryos. PubMed DOI

Zhang, W., Chen, F., Chen, R., Xie, D., Yang, J., Zhao, X., Guo, R., Zhang, Y., Shen, Y., Goke, J.et al. (2019). Zscan4c activates endogenous retrovirus MERVL and cleavage embryo genes. PubMed DOI PMC

Zuccotti, M., Piccinelli, A., Giorgi Rossi, P., Garagna, S. and Redi, C. A. (1995). Chromatin organization during mouse oocyte growth. PubMed DOI

Zuccotti, M., Ponce, R. H., Boiani, M., Guizzardi, S., Govoni, P., Scandroglio, R., Garagna, S. and Redi, C. A. (2002). The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

CPEB3 Maintains Developmental Competence of the Oocyte

. 2024 May 16 ; 13 (10) : . [epub] 20240516

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...