The H3.3 chaperone Hira complex orchestrates oocyte developmental competence
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
Wellcome Trust - United Kingdom
MR/N022556/1
Medical Research Council - United Kingdom
R01 HD102533
NICHD NIH HHS - United States
PubMed
35112132
PubMed Central
PMC8959146
DOI
10.1242/dev.200044
PII: 274223
Knihovny.cz E-zdroje
- Klíčová slova
- Competent oocyte, Hira complex, Histone H3.3, Oocyte-to-embryo transition, Zygotic genome activation,
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- chromatin metabolismus MeSH
- embryonální vývoj genetika MeSH
- genový knockdown MeSH
- histonové chaperony genetika metabolismus MeSH
- histony metabolismus MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- oocyty růst a vývoj metabolismus MeSH
- oogeneze genetika MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- signální transdukce genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- zygota metabolismus MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- Cabin1 protein, mouse MeSH Prohlížeč
- chromatin MeSH
- Hira protein, mouse MeSH Prohlížeč
- histonové chaperony MeSH
- histony MeSH
- proteiny buněčného cyklu MeSH
- transkripční faktory MeSH
- Zscan4d protein, mouse MeSH Prohlížeč
Successful reproduction requires an oocyte competent to sustain early embryo development. By the end of oogenesis, the oocyte has entered a transcriptionally silenced state, the mechanisms and significance of which remain poorly understood. Histone H3.3, a histone H3 variant, has unique cell cycle-independent functions in chromatin structure and gene expression. Here, we have characterised the H3.3 chaperone Hira/Cabin1/Ubn1 complex, showing that loss of function of any of these subunits causes early embryogenesis failure in mouse. Transcriptome and nascent RNA analyses revealed that transcription is aberrantly silenced in mutant oocytes. Histone marks, including H3K4me3 and H3K9me3, are reduced and chromatin accessibility is impaired in Hira/Cabin1 mutants. Misregulated genes in mutant oocytes include Zscan4d, a two-cell specific gene involved in zygote genome activation. Overexpression of Zscan4 in the oocyte partially recapitulates the phenotypes of Hira mutants and Zscan4 knockdown in Cabin1 mutant oocytes partially restored their developmental potential, illustrating that temporal and spatial expression of Zscan4 is fine-tuned at the oocyte-to-embryo transition. Thus, the H3.3 chaperone Hira complex has a maternal effect function in oocyte developmental competence and embryogenesis, through modulating chromatin condensation and transcriptional quiescence.
Center for Reproductive Sciences University of California San Francisco CA 94143 USA
School of Animal Sciences AgCenter Louisiana State University Baton Rouge LA 70803 USA
Zobrazit více v PubMed
Ahmed, K., Dehghani, H., Rugg-Gunn, P., Fussner, E., Rossant, J. and Bazett-Jones, D. P. (2010). Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 5, e10531. 10.1371/journal.pone.0010531 PubMed DOI PMC
Amano, T., Hirata, T., Falco, G., Monti, M., Sharova, L. V., Amano, M., Sheer, S., Hoang, H. G., Piao, Y., Stagg, C. A.et al. (2013). Zscan4 restores the developmental potency of embryonic stem cells. Nat. Commun. 4, 1966. 10.1038/ncomms2966 PubMed DOI PMC
Ancelin, K., Syx, L., Borensztein, M., Ranisavljevic, N., Vassilev, I., Briseno-Roa, L., Liu, T., Metzger, E., Servant, N., Barillot, E.et al. (2016). Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. Elife 5, e08851. 10.7554/eLife.08851 PubMed DOI PMC
Andreu-Vieyra, C. V., Chen, R., Agno, J. E., Glaser, S., Anastassiadis, K., Stewart, A. F. and Matzuk, M. M. (2010). MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol. 8, e1000453. 10.1371/journal.pbio.1000453 PubMed DOI PMC
Banaszynski, L. A., Wen, D., Dewell, S., Whitcomb, S. J., Lin, M., Diaz, N., Elsasser, S. J., Chapgier, A., Goldberg, A. D., Canaani, E.et al. (2013). Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell 155, 107-120. 10.1016/j.cell.2013.08.061 PubMed DOI PMC
Bouniol-Baly, C., Hamraoui, L., Guibert, J., Beaujean, N., Szollosi, M. S. and Debey, P. (1999). Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol. Reprod. 60, 580-587. 10.1095/biolreprod60.3.580 PubMed DOI
Bultman, S. J., Gebuhr, T. C., Pan, H., Svoboda, P., Schultz, R. M. and Magnuson, T. (2006). Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 20, 1744-1754. 10.1101/gad.1435106 PubMed DOI PMC
Conti, M. and Franciosi, F. (2018). Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum. Reprod. Update 24, 245-266. 10.1093/humupd/dmx040 PubMed DOI PMC
Dahl, J. A., Jung, I., Aanes, H., Greggains, G. D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A. Y.et al. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548-552. 10.1038/nature19360 PubMed DOI PMC
Dan, J., Liu, Y., Liu, N., Chiourea, M., Okuka, M., Wu, T., Ye, X., Mou, C., Wang, L., Wang, L.et al. (2014). Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev. Cell 29, 7-19. 10.1016/j.devcel.2014.03.004 PubMed DOI PMC
De Iaco, A., Planet, E., Coluccio, A., Verp, S., Duc, J. and Trono, D. (2017). DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941-945. 10.1038/ng.3858 PubMed DOI PMC
De La Fuente, R. and Eppig, J. J. (2001). Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev. Biol. 229, 224-236. 10.1006/dbio.2000.9947 PubMed DOI
De La Fuente, R., Viveiros, M. M., Burns, K. H., Adashi, E. Y., Matzuk, M. M. and Eppig, J. J. (2004). Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 275, 447-458. 10.1016/j.ydbio.2004.08.028 PubMed DOI
de Vries, W. N., Binns, L. T., Fancher, K. S., Dean, J., Moore, R., Kemler, R. and Knowles, B. B. (2000). Expression of Cre recombinase in mouse oocytes: A means to study maternal effect genes. Genesis 26, 110-112. 10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8 PubMed DOI
Debey, P., Szollosi, M. S., Szollosi, D., Vautier, D., Girousse, A. and Besombes, D. (1993). Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol. Reprod. Dev. 36, 59-74. 10.1002/mrd.1080360110 PubMed DOI
Dumdie, J. N., Cho, K., Ramaiah, M., Skarbrevik, D., Mora-Castilla, S., Stumpo, D. J., Lykke-Andersen, J., Laurent, L. C., Blackshear, P. J., Wilkinson, M. F.et al. (2018). Chromatin modification and global transcriptional silencing in the oocyte mediated by the mRNA decay activator ZFP36L2. Dev. Cell 44, 392-402. 10.1016/j.devcel.2018.01.006 PubMed DOI PMC
Esau, C., Boes, M., Youn, H. D., Tatterson, L., Liu, J. O. and Chen, J. (2001). Deletion of calcineurin and myocyte enhancer factor 2 (MEF2) binding domain of Cabin1 results in enhanced cytokine gene expression in T cells. J. Exp. Med. 194, 1449-1459. 10.1084/jem.194.10.1449 PubMed DOI PMC
Falco, G., Lee, S. L., Stanghellini, I., Bassey, U. C., Hamatani, T. and Ko, M. S. (2007). Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539-550. 10.1016/j.ydbio.2007.05.003 PubMed DOI PMC
Gassler, J., Flyamer, I. M. and Tachibana, K. (2018). Single-nucleus Hi-C of mammalian oocytes and zygotes. Methods Cell Biol. 144, 389-407. 10.1016/bs.mcb.2018.03.032 PubMed DOI
Hanna, C. W., Taudt, A., Huang, J., Gahurova, L., Kranz, A., Andrews, S., Dean, W., Stewart, A. F., Colome-Tatche, M. and Kelsey, G. (2018). MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nat. Struct. Mol. Biol. 25, 73-82. 10.1038/s41594-017-0013-5 PubMed DOI
Huang, Y., Jiang, X., Yu, M., Huang, R., Yao, J., Li, M., Zheng, F. and Yang, X. (2017). Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos. Reprod. Fertil. Dev. 29, 1260-1269. 10.1071/RD15463 PubMed DOI
Hung, S. S., Wong, R. C., Sharov, A. A., Nakatake, Y., Yu, H. and Ko, M. S. (2013). Repression of global protein synthesis by Eif1a-like genes that are expressed specifically in the two-cell embryos and the transient Zscan4-positive state of embryonic stem cells. DNA Res. 20, 391-402. 10.1093/dnares/dst018 PubMed DOI PMC
Inoue, A. and Zhang, Y. (2014). Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat. Struct. Mol. Biol. 21, 609-616. 10.1038/nsmb.2839 PubMed DOI PMC
Ishiguro, K. I., Monti, M., Akiyama, T., Kimura, H., Chikazawa-Nohtomi, N., Sakota, M., Sato, S., Redi, C. A., Ko, S. B. H. and Ko, M. S. H. (2017). Zscan4 is expressed specifically during late meiotic prophase in both spermatogenesis and oogenesis. In Vitro Cell Dev-An 53, 167-178. 10.1007/s11626-016-0096-z PubMed DOI PMC
Jang, H., Choi, D. E., Kim, H., Cho, E. J. and Youn, H. D. (2007). Cabin1 represses MEF2 transcriptional activity by association with a methyltransferase, SUV39H1. J. Biol. Chem. 282, 11172-11179. 10.1074/jbc.M611199200 PubMed DOI
Karatas, H., Townsend, E. C., Cao, F., Chen, Y., Bernard, D., Liu, L., Lei, M., Dou, Y. and Wang, S. (2013). High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein-protein interaction. J. Am. Chem. Soc. 135, 669-682. 10.1021/ja306028q PubMed DOI PMC
Kim, J., Zhao, H., Dan, J., Kim, S., Hardikar, S., Hollowell, D., Lin, K., Lu, Y., Takata, Y., Shen, J.et al. (2016). Maternal Setdb1 is required for meiotic progression and preimplantation development in mouse. PLoS Genet. 12, e1005970. 10.1371/journal.pgen.1005970 PubMed DOI PMC
Ko, M. S. H. (2016). Zygotic genome activation revisited: looking through the expression and function of Zscan4. Mammalian Preimplantation Development 120, 103-124. 10.1016/bs.ctdb.2016.04.004 PubMed DOI
Kubicek, S., O'Sullivan, R. J., August, E. M., Hickey, E. R., Zhang, Q., Teodoro, M. L., Rea, S., Mechtler, K., Kowalski, J. A., Homon, C. A.et al. (2007). Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473-481. 10.1016/j.molcel.2007.01.017 PubMed DOI
Li, L., Lu, X. and Dean, J. (2013). The maternal to zygotic transition in mammals. Mol. Aspects Med. 34, 919-938. 10.1016/j.mam.2013.01.003 PubMed DOI PMC
Lin, C. J., Conti, M. and Ramalho-Santos, M. (2013). Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development 140, 3624-3634. 10.1242/dev.095513 PubMed DOI PMC
Lin, C. J., Koh, F. M., Wong, P., Conti, M. and Ramalho-Santos, M. (2014). Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev. Cell 30, 268-279. 10.1016/j.devcel.2014.06.022 PubMed DOI PMC
Liu, H. and Aoki, F. (2002). Transcriptional activity associated with meiotic competence in fully grown mouse GV oocytes. Zygote 10, 327-332. 10.1017/S0967199402004069 PubMed DOI
Luciano, A. M., Franciosi, F., Dieci, C. and Lodde, V. (2014). Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim. Reprod. Sci. 149, 3-10. 10.1016/j.anireprosci.2014.06.026 PubMed DOI
Ma, J.-Y., Li, M., Luo, Y.-B., Song, S., Tian, D., Yang, J., Zhang, B., Hou, Y., Schatten, H., Liu, Z.et al. (2013). Maternal factors required for oocyte developmental competence in mice: transcriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes. Cell Cycle 12, 1928-1938. 10.4161/cc.24991 PubMed DOI PMC
Matoba, S., Liu, Y., Lu, F., Iwabuchi, K. A., Shen, L., Inoue, A. and Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884-895. 10.1016/j.cell.2014.09.055 PubMed DOI PMC
Matsson, H., Davey, E. J., Draptchinskaia, N., Hamaguchi, I., Ooka, A., Leeven, P., Forsberg, E., Karlsson, S. and Dahl, N. (2004). Targeted disruption of the ribosomal protein S19 gene is lethal prior to implantation. Mol. Cell. Biol. 24, 4032-4037. 10.1128/MCB.24.9.4032-4037.2004 PubMed DOI PMC
McGuinness, B. E., Anger, M., Kouznetsova, A., Gil-Bernabe, A. M., Helmhart, W., Kudo, N. R., Wuensche, A., Taylor, S., Hoog, C., Novak, B.et al. (2009). Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19, 369-380. 10.1016/j.cub.2009.01.064 PubMed DOI
Nashun, B., Hill, P. W., Smallwood, S. A., Dharmalingam, G., Amouroux, R., Clark, S. J., Sharma, V., Ndjetehe, E., Pelczar, P., Festenstein, R. J.et al. (2015). Continuous histone replacement by hira is essential for normal transcriptional regulation and De Novo DNA methylation during mouse oogenesis. Mol. Cell 60, 611-625. 10.1016/j.molcel.2015.10.010 PubMed DOI PMC
Navarro, C., Lyu, J., Katsori, A. M., Caridha, R. and Elsasser, S. J. (2020). An embryonic stem cell-specific heterochromatin state promotes core histone exchange in the absence of DNA accessibility. Nat. Commun. 11, 5095. 10.1038/s41467-020-18863-1 PubMed DOI PMC
Nestorov, P., Hotz, H. R., Liu, Z. and Peters, A. H. (2015). Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos. Sci. Rep. 5, 14347. 10.1038/srep14347 PubMed DOI PMC
Percharde, M., Lin, C. J., Yin, Y., Guan, J., Peixoto, G. A., Bulut-Karslioglu, A., Biechele, S., Huang, B., Shen, X. and Ramalho-Santos, M. (2018). A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174, 391-405. 10.1016/j.cell.2018.05.043 PubMed DOI PMC
Posfai, E., Kunzmann, R., Brochard, V., Salvaing, J., Cabuy, E., Roloff, T. C., Liu, Z., Tardat, M., van Lohuizen, M., Vidal, M.et al. (2012). Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920-932. 10.1101/gad.188094.112 PubMed DOI PMC
Rai, T. S., Puri, A., McBryan, T., Hoffman, J., Tang, Y., Pchelintsev, N. A., van Tuyn, J., Marmorstein, R., Schultz, D. C. and Adams, P. D. (2011). Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. Mol. Cell. Biol. 31, 4107-4118. 10.1128/MCB.05546-11 PubMed DOI PMC
Ray-Gallet, D., Ricketts, M. D., Sato, Y., Gupta, K., Boyarchuk, E., Senda, T., Marmorstein, R. and Almouzni, G. (2018). Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit. Nat. Commun. 9, 3103. 10.1038/s41467-018-05581-y PubMed DOI PMC
Rodriguez-Terrones, D., Gaume, X., Ishiuchi, T., Weiss, A., Kopp, A., Kruse, K., Penning, A., Vaquerizas, J. M., Brino, L. and Torres-Padilla, M. E. (2018). A molecular roadmap for the emergence of early-embryonic-like cells in culture. Nat. Genet. 50, 106-119. 10.1038/s41588-017-0016-5 PubMed DOI PMC
Schneiderman, J. I., Orsi, G. A., Hughes, K. T., Loppin, B. and Ahmad, K. (2012). Nucleosome-depleted chromatin gaps recruit assembly factors for the H3.3 histone variant. Proc. Natl. Acad. Sci. USA 109, 19721-19726. 10.1073/pnas.1206629109 PubMed DOI PMC
Schultz, R. M., Stein, P. and Svoboda, P. (2018). The oocyte-to-embryo transition in mouse: past, present, and future. Biol. Reprod. 99, 160-174. 10.1093/biolre/ioy013 PubMed DOI PMC
Smith, R., Pickering, S. J., Kopakaki, A., Thong, K. J., Anderson, R. A. and Lin, C. J. (2021). HIRA contributes to zygote formation in mice and is implicated in human 1PN zygote phenotype. Reproduction 161, 697-707. 10.1530/REP-20-0636 PubMed DOI PMC
Tanaka, M., Hennebold, J. D., Macfarlane, J. and Adashi, E. Y. (2001). A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 128, 655-664. 10.1242/dev.128.5.655 PubMed DOI
van der Heijden, G. W., Derijck, A. A., Posfai, E., Giele, M., Pelczar, P., Ramos, L., Wansink, D. G., van der Vlag, J., Peters, A. H. and de Boer, P. (2007). Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat. Genet. 39, 251-258. 10.1038/ng1949 PubMed DOI
Wen, D., Banaszynski, L. A., Rosenwaks, Z., Allis, C. D. and Rafii, S. (2014). H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. Nucleus 5, 369-375. 10.4161/nucl.36231 PubMed DOI
Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W.et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652-657. 10.1038/nature18606 PubMed DOI
Wu, J., Xu, J., Liu, B., Yao, G., Wang, P., Lin, Z., Huang, B., Wang, X., Li, T., Shi, S.et al. (2018). Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256-260. 10.1038/s41586-018-0080-8 PubMed DOI
Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z.et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353-360. 10.1126/science.aaw5118 PubMed DOI
Yeung, W. K. A., Brind'Amour, J., Hatano, Y., Yamagata, K., Feil, R., Lorincz, M. C., Tachibana, M., Shinkai, Y. and Sasaki, H. (2019). Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Reports 27, 282-293. 10.1016/j.celrep.2019.03.002 PubMed DOI
Zalzman, M., Falco, G., Sharova, L. V., Nishiyama, A., Thomas, M., Lee, S. L., Stagg, C. A., Hoang, H. G., Yang, H. T., Indig, F. E.et al. (2010). Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858-863. 10.1038/nature08882 PubMed DOI PMC
Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W.et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137. 10.1186/gb-2008-9-9-r137 PubMed DOI PMC
Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q.et al. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553-557. 10.1038/nature19361 PubMed DOI
Zhang, Z., Zhai, Y., Ma, X., Zhang, S., An, X., Yu, H. and Li, Z. (2018). Down-regulation of H3K4me3 by MM-102 facilitates epigenetic reprogramming of porcine somatic cell nuclear transfer embryos. Cell. Physiol. Biochem. 45, 1529-1540. 10.1159/000487579 PubMed DOI
Zhang, W., Chen, F., Chen, R., Xie, D., Yang, J., Zhao, X., Guo, R., Zhang, Y., Shen, Y., Goke, J.et al. (2019). Zscan4c activates endogenous retrovirus MERVL and cleavage embryo genes. Nucleic Acids Res. 47, 8485-8501. 10.1093/nar/gkz594 PubMed DOI PMC
Zuccotti, M., Piccinelli, A., Giorgi Rossi, P., Garagna, S. and Redi, C. A. (1995). Chromatin organization during mouse oocyte growth. Mol. Reprod. Dev. 41, 479-485. 10.1002/mrd.1080410410 PubMed DOI
Zuccotti, M., Ponce, R. H., Boiani, M., Guizzardi, S., Govoni, P., Scandroglio, R., Garagna, S. and Redi, C. A. (2002). The analysis of chromatin organisation allows selection of mouse antral oocytes competent for development to blastocyst. Zygote 10, 73-78. 10.1017/S0967199402002101 PubMed DOI