Effect of different soil amendments on soil buffering capacity
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, odvolaná publikace
PubMed
35139111
PubMed Central
PMC8827450
DOI
10.1371/journal.pone.0263456
PII: PONE-D-21-24408
Knihovny.cz E-zdroje
- MeSH
- biodegradace MeSH
- borovice chemie fyziologie MeSH
- ekosystém MeSH
- látky znečišťující půdu chemie MeSH
- lidé MeSH
- odpadní vody chemie MeSH
- půda chemie MeSH
- pufry MeSH
- regenerace a remediace životního prostředí metody MeSH
- skládková zařízení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- odvolaná publikace MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Španělsko MeSH
- Názvy látek
- látky znečišťující půdu MeSH
- odpadní vody MeSH
- půda MeSH
- pufry MeSH
The buffering capacity of the soil is a very important property of the soil, which determines the ability of the soil to resist external influences, especially changes in pH and thus create good living conditions for plants and microorganisms in the soil. The buffering capacity thus significantly contributes to maintaining the health and quality of the soil. Buffering capacity is an important indicator of soil quality, because it is related to the overall condition of the soil ecosystem and other soil properties. The goal of this paper is to determine the effect of applying different soil amendments on the soils, 10 years after application. We compared the effect of 6 different treatments in closed plots: Natural conditions (N = control); Bare soil (B); Straw mulching (S); Pine mulch (P); TerraCottem hydroabsorbent polymers (H); Prescribed burn (F); and Sewage sludge (M). Our results have shown that the application of different amedments leads to an effect on the plowing capacity of the soil. While in the case of the control variant (Natural conditions, N) the buffering capacity of the soil was measured at 144.93 ± 0.25, the addition of different amendments decreased the buffering capacity in the following order: Bare soil (B) 142.73±0.21 > TerraCotem hydroaborbent polymer (H) 142.23±.15 > Pine mulch (P) 140.40±0.30, Prescribed burn (F) 138.20±0.30, Sludge (S) 127.47±0.15. In the case of all variants, these are statistically significant differences (p ≤ 0.05). Thus, soil amendments have been shown to have a statistically significant effect on soil buffering capacity.
Zobrazit více v PubMed
Curtin D, Trolove S. Predicting pH buffering capacity of New Zealand soils from organic matter content and mineral characteristics. Soil Research [Internet]. 2013;51(6). Available from: http://www.publish.csiro.au/?paper=SR13137
Weaver AR, Kissel DE, Chen F, West LT, Adkins W, Rickman D, et al.. Mapping Soil pH Buffering Capacity of Selected Fields in the Coastal Plain. Soil Science Society of America Journal [Internet]. 2004;68(2):662–668. Available from: http://doi.wiley.com/10.2136/sssaj2004.6620 DOI
Neina D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science [Internet]. 2019. Nov.3;2019:1–9. Available from: https://www.hindawi.com/journals/aess/2019/5794869/
Raczuk J, Deska J. Buffer Properties of Forest Soils in Selected Protected Areas. Ecological Chemistry and Engineering. 2012;19(3):231–237.
Jansen van Rensburg HG, Claassens AS, Beukes DJ. Relationships between soil buffer capacity and selected soil properties in a resource-poor farming area in the Mpumalanga Province of South Africa. South African Journal of Plant and Soil [Internet]. 2009;26(4):237–243. Available from: http://www.tandfonline.com/doi/abs/10.1080/02571862.2009.10639961 DOI
Helling CS, Chesters G, Corey RB. Contribution of Organic Matter and Clay to Soil Cation-Exchange Capacity as Affected by the pH of the Saturating Solution. Soil Science Society of America Journal [Internet]. 1964. [cited 2021Nov.21];28(4):517–520. Available from: http://doi.wiley.com/10.2136/sssaj1964.03615995002800040020x DOI
Curtin D, Campbell CA, Messer D. Prediction of Titratable Acidity and Soil Sensitivity to pH Change. Journal of Environmental Quality [Internet]. 1996. [cited 2021Nov.21];25(6):1280–1284. Available from: https://onlinelibrary.wiley.com/doi/abs/10.2134/jeq1996.00472425002500060016x DOI
de Villiers JM, Jackson ML. Aluminous Chlorite Origin of pH-Dependent Cation Exchange Capacity Variations. Soil Science Society of America Journal [Internet]. 1967. [cited 2021Nov.21];31(5):614–619. Available from: http://doi.wiley.com/10.2136/sssaj1967.03615995003100050005x DOI
Xu R-kou Zhao A-zhen, Yuan J-hua, Jiang J. PH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. Journal of Soils and Sediments [Internet]. 2012;12(4):494–502. Available from: http://link.springer.com/10.1007/s11368-012-0483-3 DOI
Latifah O, Ahmed OH, Majid NMA. Soil pH Buffering Capacity and Nitrogen Availability Following Compost Application in a Tropical Acid Soil. Compost Science & Utilization [Internet]. 2018. Jan.2 [cited 2021Nov.21];26(1):1–15. Available from: https://www.tandfonline.com/doi/full/10.1080/1065657X.2017.1329039 DOI
Nelson PN, Su N. Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils. Soil Research [Internet]. 2010. [cited 2021Nov.21];48(3). Available from: http://www.publish.csiro.au/?paper=SR09150
García-Gil JC, Ceppi SB, Velasco MI, Polo A, Senesi N. Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma [Internet]. 2004. [cited 2021Nov.21];121(1–2):135–142. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016706103003392
Costello RC, Sullivan DM. Determining the pH Buffering Capacity of Compost Via Titration with Dilute Sulfuric Acid. Waste and Biomass Valorization [Internet]. 2014. [cited 2021Nov.21];5(3):505–513. Available from: http://link.springer.com/10.1007/s12649-013-9279-y DOI
Yu Y, Odindo AO, Xue L, Yang L. Influences of biochar addition on vegetable soil nitrogen balance and pH buffering capacity. IOP Conference Series: Earth and Environmental Science [Internet]. 2016. Aug.1;41. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/41/1/012029 DOI
IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps.: World Soil Resources Reports No. 106. 1st ed. Rome: FAO; 2015.
PAND. Programa de Acción Nacional Español de Lucha contra la Desertificación, en cumplimiento de la Convención de Naciones Unidas de Lucha contra la Desertificación. Ministerio de Medioambiente Medio rural y Medio marino; 2008.
Maia P, Pausas JG, Arcenegui V, Guerrero C, Pérez-Bejarano A, Mataix-Solera J, et al.. Wildfire effects on the soil seed bank of a maritime pine stand—The importance of fire severity. Geoderma [Internet]. 2012;191:80–88. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016706112000687
Guitián-Ojea F, Carballas T. Técnicas de Análisis de Suelos. Editorial Pico Sacro. Santiago de Compostela; 1976.
Marañés A, Sánchez JA, De Haro S, Marañés A.; De Haro S.; Sánchez S.T.; et al.. Análisis de Suelo, Metodología e Interpretación. Alméria: Servicio de Publicaciones de la Universidad de Almería; 1994. PubMed
ISO 10390:2005 Soil quality—Determination of pH, Edition 2, Technical Committee: ISO/TC 190/SC 3 Chemical and physical characterization.
ISO 10693:1995 Soil quality—Determination of carbonate content—Volumetric method, Edition 1, Technical Committee: ISO/TC 190/SC 3, Chemical and physical characterization.
Ostrowska A, Gawlinski S, Szczubialka Z. Methods for analyzing and assessing the properties of soil and plants. (in Polish). Warszawa: Instytut Ochrony Środowiska, Warszawa; 1991.
Carter CM, Van der Sloot HA, Cooling D. PH-dependent extraction of soil and soil amendments to understand the factors controlling element mobility. European Journal of Soil Science [Internet]. 2009;60(4):622–637. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2389.2009.01139.x DOI
Naramabuye FX, Haynes RJ. Effect of organic amendments on soil pH and Al solubility and use laboratory indices to predict their liming effect. Soil Science [Internet]. 2006;171(10):754–763. Available from: https://journals.lww.com/00010694-200610000-00003
Haynes RJ, Mokolobate MS. Nutrient Cycling in Agroecosystems [Internet]. [cited 2021Nov.21];59(1):47–63. Available from: http://link.springer.com/10.1023/A:1009823600950 DOI
Hodson ME, Langan SJ, Lumsdon A. A Comparison of Soil Sensitivity to Acidification Based on Laboratory-Determined Short-Term Acid Buffering Capacity and the Skokloster Classification. 1st ed. Springer; Netherlands; 1998.
Martinec J, Hladký J, Pokorný E. An evaluation of buffering capacity of Chernozems and Regosols. 1st ed. Brno: Mendel University in Brno; 2010.
Marques M, Schwilch G, Lauterburg N, Crittenden S, Tesfai M, Stolte J, et al.. Multifaceted Impacts of Sustainable Land Management in Drylands: A Review. Sustainability [Internet]. 2016. [cited 2021Nov.21];8(2). Available from: http://www.mdpi.com/2071-1050/8/2/177
Lavee H, Imeson AC, Sarah P. The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degradation & Development [Internet]. 1998. [cited 2021Nov.21];9(5):407–422. Available from: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-145X(199809/10)9:5407::AID-LDR3023.0.CO;2-6 DOI
Zheng JY, Zhao JS, Shi ZH, Wang L. Soil aggregates are key factors that regulate erosion-related carbon loss in citrus orchards of southern China: Bare land vs. grass-covered land. Agriculture, Ecosystems & Environment [Internet]. 2021. [cited 2021Nov.21];309. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167880920304400
Jiang J, Wang Y-P, Yu M, Cao N, Yan J. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chemical Geology [Internet]. 2018;501:86–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009254118305126
Kirks G, Bellamy P, Lark M. Changes in soil pH across England and Wales in response to decreased acid deposition. Global Change Biology [Internet]. 2010. [cited 2021Nov.21];:no-no. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2009.02135.x DOI
Zhang Y, Zhang S, Wang R, Cai J, Zhang Y, Li H, et al.. Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Science and Plant Nutrition [Internet]. 2016. Nov.1;62(5–6):432–439. Available from: https://www.tandfonline.com/doi/full/10.1080/00380768.2016.1226685 DOI
Rowley MC, Grand S, Adatte T, Verrecchia EP. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma [Internet]. 2020. [cited 2021Nov.21];361. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016706119318683
Paradelo R, Moldes AB, Barral MT. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. Journal of Environmental Management [Internet]. 2013. [cited 2021Nov.21];116:18–26. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301479712006251 doi: 10.1016/j.jenvman.2012.12.001 PubMed DOI
El-Saied H, El-Hady OA, Basta AH, El-Dewiny CY, Abo-Sedera SA. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels. Journal of the Saudi Society of Agricultural Sciences [Internet]. 2016;15(2):188–194. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1658077X14000605
Abedi-Koupai J, Mostafazadeh-Fard B, Afyuni M, Bagheri MR. Effect of treated wastewater on soil chemical and physical properties in an arid region. Plant, Soil and Environment. 2011. Nov.17;52(8):335–344.
Brax M, Buchmann C, Schaumann GE. Biohydrogel induced soil-water interactions: how to untangle the gel effect? A review. Journal of Plant Nutrition and Soil Science [Internet]. 2017;180(2):121–141. Available from: https://onlinelibrary.wiley.com/doi/ doi: 10.1002/jpln.201600453 DOI
Dvořáčková H, González PH, Záhora J, Ruiz Sinoga RS. El efecto de los polímeros absorbentes en la actividad microbiologica del suelo bajo condiciones mediterráneas. Revista MVZ Córdoba [Internet]. 2018. Jan.10;:6414–6464. Available from: https://revistas.unicordoba.edu.co/index.php/revistamvz/article/view/1237
Urbaniak M, Wyrwicka A, Tołoczko W, Serwecińska L, Zieliński M. The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation. Science of The Total Environment [Internet]. 2017;586:66–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S004896971730253X doi: 10.1016/j.scitotenv.2017.02.012 PubMed DOI
Hueso-González P, Muñoz-Rojas M, Martínez-Murillo JF. The role of organic amendments in drylands restoration. Current Opinion in Environmental Science & Health [Internet]. 2018. [cited 2021Nov.21];5:1–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468584417300405
Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety [Internet]. 2005. [cited 2021Nov.21];60(3):324–349. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0147651304000922 doi: 10.1016/j.ecoenv.2004.06.010 PubMed DOI
Ferreras L, Gomez E, Toresani S, Firpo I, Rotondo R. Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Bioresource Technology [Internet]. 2006. [cited 2021Nov.21];97(4):635–640. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960852405001884 PubMed
Hueso-González P, Martínez-Murillo JF, Ruiz-Sinoga JD. THE IMPACT OF ORGANIC AMENDMENTS ON FOREST SOIL PROPERTIES UNDER MEDITERRANEAN CLIMATIC CONDITIONS. Land Degradation & Development [Internet]. 2014. [cited 2021Nov.21];25(6):604–612. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ldr.2296 DOI
Schmithals A, Kühn N, Liu J. To mulch or not to mulch? Effects of gravel mulch toppings on plant establishment and development in ornamental prairie plantings. PLOS ONE [Internet]. 2017. Feb.6 [cited 2021Nov.21];12(2). Available from: doi: 10.1371/journal.pone.0171533 PubMed DOI PMC
Qu B, Liu Y, Sun X, Li S, Wang X, Xiong K, et al.. Effect of various mulches on soil physico—Chemical properties and tree growth (Sophora japonica) in urban tree pits. PLOS ONE [Internet]. 2019. Feb.6 [cited 2021Nov.21];14(2). Available from: https://dx.plos.org/10.1371/journal.pone.0210777 PubMed DOI PMC
Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Guerreiro C, Kälviäinen R, et al.. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia [Internet]. 2013. [cited 2021Nov.21];54(3):551–563. Available from: https://onlinelibrary.wiley.com/doi/10.1111/epi.12074 PubMed DOI
Alcañiz M, Outeiro L, Francos M, Farguell J, Úbeda X. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Science of The Total Environment [Internet]. 2016. [cited 2021Nov.21];572:1329–1335. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969716301152 PubMed
Pigué M, Castellnou M, Valor T, Pagés J, Larrañaga A, Miralles M, et al.. Integració del risc de grans incendis forestals (GIF) en la gestió forestal: Incendis tipus i vulnerabilitat de les estructures forestals al foc de capçades. Sèrie: Orientacions de gestió forestal sostenible per a Catalunya (ORGEST. 1st ed. Centre de la Propietat Forestal. Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural. Generalitat de Catalunya; 2011. doi: 10.1111/j.1651-2227.2011.02269.x DOI
Santín C, Doerr SH. Fire effects on soils: the human dimension. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 2016. Jun.5;371(1696). Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2015.0171 PubMed DOI PMC
Certini G. Effects of fire on properties of forest soils: a review. Oecologia [Internet]. 2005;143(1):1–10. Available from: http://link.springer.com/10.1007/s00442-004-1788-8 PubMed DOI
Fonseca F, de Figueiredo T, Nogueira C, Queirós A. Effect of prescribed fire on soil properties and soil erosion in a Mediterranean mountain area. Geoderma [Internet]. 2017. [cited 2021Nov.21];307:172–180. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016706117303063
Wang J, Zhang C, Shen Y, Zhou Z, Yu J, Li Y, et al.. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. Journal of Materials Chemistry A [Internet]. 2015;3(9):5126–5131. Available from: http://xlink.rsc.org/?DOI=C4TA06778A
Bai N, Wang S, Abuduaini R, Zhu X, Zhao Y. Isolation and characterization of Sphingomonas sp. Y2 capable of high-efficiency degradation of nonylphenol polyethoxylates in wastewater. Environmental Science and Pollution Research [Internet]. 2016;23(12):12019–12029. Available from: http://link.springer.com/10.1007/s11356-016-6413-y PubMed DOI
Li Y, Wang N, Xu K, Tiwari D. Potential of Industrial Byproducts in Ameliorating Acidity and Aluminum Toxicity of Soils Under Tea Plantation. Pedosphere [Internet]. 2010. [cited 2021Nov.21];20(5):645–654. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1002016010600549
Lu X, Mao Q, Mo J, Gilliam FS, Zhou G, Luo Y, et al.. Divergent Responses of Soil Buffering Capacity to Long-Term N Deposition in Three Typical Tropical Forests with Different Land-Use History. Environmental Science & Technology [Internet]. 2015. Apr.7 [cited 2021Nov.21];49(7):4072–4080. Available from: https://pubs.acs.org/doi/10.1021/es5047233 PubMed DOI