Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM127776
NIGMS NIH HHS - United States
PubMed
35179493
PubMed Central
PMC8893722
DOI
10.7554/elife.74175
PII: 74175
Knihovny.cz E-zdroje
- Klíčová slova
- AAA+, DNA replication, S. cerevisiae, molecular biophysics, sliding clamp loader, structural biology,
- MeSH
- adenosintrifosfát metabolismus MeSH
- adenosintrifosfatasy metabolismus MeSH
- ATPázy spojené s různými buněčnými aktivitami metabolismus MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- DNA metabolismus MeSH
- elektronová kryomikroskopie MeSH
- proliferační antigen buněčného jádra metabolismus MeSH
- replikace DNA * MeSH
- replikační protein C chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adenosintrifosfát MeSH
- adenosintrifosfatasy MeSH
- ATPázy spojené s různými buněčnými aktivitami MeSH
- DNA-dependentní DNA-polymerasy MeSH
- DNA MeSH
- proliferační antigen buněčného jádra MeSH
- replikační protein C MeSH
Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.
Zobrazit více v PubMed
Bowman GD, O’Donnell M, Kuriyan J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature. 2004;429:724–730. doi: 10.1038/nature02585. PubMed DOI
Cai J, Yao N, Gibbs E, Finkelstein J, Phillips B, O’Donnell M, Hurwitz J. ATP hydrolysis catalyzed by human replication factor C requires participation of multiple subunits. PNAS. 1998;95:11607–11612. doi: 10.1073/pnas.95.20.11607. PubMed DOI PMC
Castaneda JC, Schrecker M, Remus D, Hite RK. Mechanisms of Loading and Release of the 9-1-1 Checkpoint Clamp. bioRxiv. 2021 doi: 10.1101/2021.09.13.460164. PubMed DOI PMC
Chen S, Levin MK, Sakato M, Zhou Y, Hingorani MM. Mechanism of ATP-driven PCNA clamp loading by S. cerevisiae RFC. Journal of Molecular Biology. 2009;388:431–442. doi: 10.1016/j.jmb.2009.03.014. PubMed DOI PMC
Delano WL. The PyMOL Molecular Graphics System. PyMOL. 2002 http://www.pymol.org
Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. A quantitative atlas of mitotic phosphorylation. PNAS. 2008;105:10762–10767. doi: 10.1073/pnas.0805139105. PubMed DOI PMC
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallographica. Section D, Biological Crystallography. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Erzberger JP, Berger JM. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annual Review of Biophysics and Biomolecular Structure. 2006;35:93–114. doi: 10.1146/annurev.biophys.35.040405.101933. PubMed DOI
Finkelstein J, Antony E, Hingorani MM, O’Donnell M. Overproduction and analysis of eukaryotic multiprotein complexes in Escherichia coli using a dual-vector strategy. Analytical Biochemistry. 2003;319:78–87. doi: 10.1016/s0003-2697(03)00273-2. PubMed DOI
Frey MW, Sowers LC, Millar DP, Benkovic SJ. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Biochemistry. 1995;34:9185–9192. doi: 10.1021/bi00028a031. PubMed DOI
Gaubitz C, Liu X, Magrino J, Stone NP, Landeck J, Hedglin M, Kelch BA. Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. PNAS. 2020;117:23571–23580. doi: 10.1073/pnas.2007437117. PubMed DOI PMC
Gerlach P, Schuller JM, Bonneau F, Basquin J, Reichelt P, Falk S, Conti E. Distinct and evolutionary conserved structural features of the human nuclear exosome complex. eLife. 2018;7:e38686. doi: 10.7554/eLife.38686. PubMed DOI PMC
Goedken ER, Levitus M, Johnson A, Bustamante C, O’Donnell M, Kuriyan J. Fluorescence measurements on the E. coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding. Journal of Molecular Biology. 2004;336:1047–1059. doi: 10.1016/j.jmb.2003.12.074. PubMed DOI
Gomes XV, Gary SL, Burgers PMJ. Overproduction in Escherichia coli and characterization of yeast replication factor C lacking the ligase homology domain. The Journal of Biological Chemistry. 2000;275:14541–14549. doi: 10.1074/jbc.275.19.14541. PubMed DOI
Gomes XV, Schmidt SL, Burgers PM. ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. The Journal of Biological Chemistry. 2001;276:34776–34783. doi: 10.1074/jbc.M011743200. PubMed DOI
Grant T, Rohou A, Grigorieff N. cisTEM, user-friendly software for single-particle image processing. eLife. 2018;7:e35383. doi: 10.7554/eLife.35383. PubMed DOI PMC
Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J. Crystal Structure of the δ′ Subunit of the Clamp-Loader Complex of E. coli DNA Polymerase III. Cell. 1997;91:335–345. doi: 10.1016/S0092-8674(00)80417-1. PubMed DOI
Hanson PI, Whiteheart SW. AAA+ proteins: have engine, will work. Nature Reviews. Molecular Cell Biology. 2005;6:519–529. doi: 10.1038/nrm1684. PubMed DOI
Jean JM, Hall KB. 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking. PNAS. 2001;98:37–41. doi: 10.1073/pnas.011442198. PubMed DOI PMC
Jeruzalmi D, O’Donnell M, Kuriyan J. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell. 2001a;106:429–441. doi: 10.1016/s0092-8674(01)00463-9. PubMed DOI
Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O’Donnell M, Kuriyan J. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell. 2001b;106:417–428. PubMed
Jessop M, Felix J, Gutsche I. AAA+ ATPases: structural insertions under the magnifying glass. Current Opinion in Structural Biology. 2021;66:119–128. doi: 10.1016/j.sbi.2020.10.027. PubMed DOI PMC
Johnson A, Yao NY, Bowman GD, Kuriyan J, O’Donnell M. The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading. The Journal of Biological Chemistry. 2006;281:35531–35543. doi: 10.1074/jbc.M606090200. PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Kazmirski SL, Podobnik M, Weitze TF, O’Donnell M, Kuriyan J. Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. PNAS. 2004;101:16750–16755. doi: 10.1073/pnas.0407904101. PubMed DOI PMC
Kelch BA, Makino DL, O’Donnell M, Kuriyan J. How a DNA polymerase clamp loader opens a sliding clamp. Science (New York, N.Y.) 2011;334:1675–1680. doi: 10.1126/science.1211884. PubMed DOI PMC
Kelch BA, Makino DL, O’Donnell M, Kuriyan J. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biology. 2012;10:34–48. doi: 10.1186/1741-7007-10-34. PubMed DOI PMC
Kelch B.A. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Biopolymers. 2016;105:532–546. doi: 10.1002/bip.22827. PubMed DOI
Kidmose RT, Juhl J, Nissen P, Boesen T, Karlsen JL, Pedersen BP. Namdinator - automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ. 2019;6:526–531. doi: 10.1107/S2052252519007619. PubMed DOI PMC
Kim HS, Brill SJ. Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae. Molecular and Cellular Biology. 2001;21:3725–3737. doi: 10.1128/MCB.21.11.3725-3737.2001. PubMed DOI PMC
Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. Journal of Structural Biology. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI
Li H, Chang YY, Lee JY, Bahar I, Yang LW. DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Research. 2017;45:W374–W380. doi: 10.1093/nar/gkx385. PubMed DOI PMC
Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica. Section D, Structural Biology. 2019;75:861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC
Liu J, Zhou Y, Hingorani MM. Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism. The Journal of Biological Chemistry. 2017;292:15892–15906. doi: 10.1074/jbc.M117.798702. PubMed DOI PMC
Majka J, Burgers PMJ. The PCNA-RFC families of DNA clamps and clamp loaders. Progress in Nucleic Acid Research and Molecular Biology. 2004;78:227–260. doi: 10.1016/S0079-6603(04)78006-X. PubMed DOI
Marzahn MR, Hayner JN, Meyer JA, Bloom LB. Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C. Biochimica et Biophysica Acta. 2015;1854:31–38. doi: 10.1016/j.bbapap.2014.09.019. PubMed DOI PMC
Mastronarde DN. SerialEM: A Program for Automated Tilt Series Acquisition on Tecnai Microscopes Using Prediction of Specimen Position. Microscopy and Microanalysis. 2003;9:1182–1183. doi: 10.1017/S1431927603445911. DOI
McNally R, Bowman GD, Goedken ER, O’Donnell M, Kuriyan J. Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Structural Biology. 2010;10:3. doi: 10.1186/1472-6807-10-3. PubMed DOI PMC
Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129:665–679. doi: 10.1016/j.cell.2007.05.003. PubMed DOI
Nakane T, Kimanius D, Lindahl E, Scheres SHW. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife. 2018;7:e36861. doi: 10.7554/eLife.36861. PubMed DOI PMC
Ochoa D, Jarnuczak AF, Viéitez C, Gehre M, Soucheray M, Mateus A, Kleefeldt AA, Hill A, Garcia-Alonso L, Stein F, Krogan NJ, Savitski MM, Swaney DL, Vizcaíno JA, Noh K-M, Beltrao P. The functional landscape of the human phosphoproteome. Nature Biotechnology. 2020;38:365–373. doi: 10.1038/s41587-019-0344-3. PubMed DOI PMC
Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling. 2010;3:ra3. doi: 10.1126/scisignal.2000475. PubMed DOI
O’Donnell M, Jeruzalmi D, Kuriyan J. Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Current Biology. 2001;11:R935–R946. doi: 10.1016/s0960-9822(01)00559-0. PubMed DOI
Peled M, Tocheva AS, Sandigursky S, Nayak S, Philips EA, Nichols KE, Strazza M, Azoulay-Alfaguter I, Askenazi M, Neel BG, Pelzek AJ, Ueberheide B, Mor A. Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor. PNAS. 2018;115:E468–E477. doi: 10.1073/pnas.1710437115. PubMed DOI PMC
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Puri N, Fernandez AJ, O’Shea Murray VL, McMillan S, Keck JL, Berger JM. The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader. eLife. 2021;10:e64232. doi: 10.7554/eLife.64232. PubMed DOI PMC
Rohou A, Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. Journal of Structural Biology. 2015;192:216–221. doi: 10.1016/j.jsb.2015.08.008. PubMed DOI PMC
Sakato M, O’Donnell M, Hingorani MM. A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA. Journal of Molecular Biology. 2012a;416:163–175. doi: 10.1016/j.jmb.2011.12.017. PubMed DOI PMC
Sakato M, Zhou Y, Hingorani MM. ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction. Journal of Molecular Biology. 2012b;416:176–191. doi: 10.1016/j.jmb.2011.12.018. PubMed DOI PMC
Shiomi Y, Usukura J, Masamura Y, Takeyasu K, Nakayama Y, Obuse C, Yoshikawa H, Tsurimoto T. ATP-dependent structural change of the eukaryotic clamp-loader protein, replication factor C. PNAS. 2000;97:14127–14132. doi: 10.1073/pnas.97.26.14127. PubMed DOI PMC
Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O’Donnell M, Kuriyan J. The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell. 2009;137:659–671. doi: 10.1016/j.cell.2009.03.044. PubMed DOI PMC
Subramanian S, Gorday K, Marcus K, Orellana MR, Ren P, Luo XR, O’Donnell ME, Kuriyan J. Allosteric communication in DNA polymerase clamp loaders relies on a critical hydrogen-bonded junction. eLife. 2021;10:e66181. doi: 10.7554/eLife.66181. PubMed DOI PMC
Terwilliger TC, Ludtke SJ, Read RJ, Adams PD, Afonine PV. Improvement of cryo-EM maps by density modification. Nature Methods. 2020;17:923–927. doi: 10.1038/s41592-020-0914-9. PubMed DOI PMC
Thompson JA, Marzahn MR, O’Donnell M, Bloom LB. Replication factor C is a more effective proliferating cell nuclear antigen (PCNA) opener than the checkpoint clamp loader, Rad24-RFC. The Journal of Biological Chemistry. 2012;287:2203–2209. doi: 10.1074/jbc.C111.318899. PubMed DOI PMC
Tomida J, Masuda Y, Hiroaki H, Ishikawa T, Song I, Tsurimoto T, Tateishi S, Shiomi T, Kamei Y, Kim J, Kamiya K, Vaziri C, Ohmori H, Todo T. DNA damage-induced ubiquitylation of RFC2 subunit of replication factor C complex. The Journal of Biological Chemistry. 2008;283:9071–9079. doi: 10.1074/jbc.M709835200. PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research. 2022;50:D439–D444. doi: 10.1093/nar/gkab1061. PubMed DOI PMC
Wang X, Li J, Schowalter RM, Jiao J, Buck CB, You J. Bromodomain protein Brd4 plays a key role in Merkel cell polyomavirus DNA replication. PLOS Pathogens. 2012;8:e1003021. doi: 10.1371/journal.ppat.1003021. PubMed DOI PMC
Wang X, Helfer CM, Pancholi N, Bradner JE, You J. Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. Journal of Virology. 2013;87:3871–3884. doi: 10.1128/JVI.03068-12. PubMed DOI PMC
Yin Y, Yang L, Zheng G, Gu C, Yi C, He C, Gao YQ, Zhao XS. Dynamics of spontaneous flipping of a mismatched base in DNA duplex. PNAS. 2014;111:8043–8048. doi: 10.1073/pnas.1400667111. PubMed DOI PMC
Yoo J, Wu M, Yin Y, Herzik MA, Lander GC, Lee SY. Cryo-EM structure of a mitochondrial calcium uniporter. Science. 2018;361:506–511. doi: 10.1126/science.aar4056. PubMed DOI PMC
Zhang X, Wigley DB. The “glutamate switch” provides a link between ATPase activity and ligand binding in AAA+ proteins. Nature Structural & Molecular Biology. 2008;15:1223–1227. doi: 10.1038/nsmb.1501. PubMed DOI PMC
Zhang K. Gctf: Real-time CTF determination and correction. Journal of Structural Biology. 2016;193:1–12. doi: 10.1016/j.jsb.2015.11.003. PubMed DOI PMC
Zheng F, Georgescu RE, Yao NY, O’Donnell ME, Li H. Rad24-RFC Loads the 9-1-1 Clamp by Inserting DNA from the Top of a Wide-Open Ring, Opposite the Mechanism of RFC/PCNA. bioRxiv. 2021 doi: 10.1101/2021.10.01.462756. DOI
Zhou Y, Hingorani MM. Impact of individual proliferating cell nuclear antigen-DNA contacts on clamp loading and function on DNA. The Journal of Biological Chemistry. 2012;287:35370–35381. doi: 10.1074/jbc.M112.399071. PubMed DOI PMC
Zhuang Z, Yoder BL, Burgers PMJ, Benkovic SJ. The structure of a ring-opened proliferating cell nuclear antigen-replication factor C complex revealed by fluorescence energy transfer. PNAS. 2006;103:2546–2551. doi: 10.1073/pnas.0511263103. PubMed DOI PMC
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SHW. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife. 2018;7:e42166. doi: 10.7554/eLife.42166. PubMed DOI PMC