The Effects of Nature-Inspired Synthesis on Silver Nanoparticle Generation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35187305
PubMed Central
PMC8851446
DOI
10.1021/acsomega.1c05308
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A wide range of methods can be used for nature-inspired metallic nanoparticle (NP) synthesis. These syntheses, however, are ongoing in the presence of diverse mixtures of different chemical compounds, and all or only a few of these contribute to resultant particle properties. Herein, the linden (Tilia sp.) inflorescence leachate and pure citric and protocatechuic acids were chosen for Ag-AgCl nanoparticle (NP) synthesis, and the resultant particles were then compared. We focused on the following four issues: (1) preparation of Ag-AgCl NPs using the Tilia sp.-based phytosynthetic protocol, (2) analytical determination of the common phenolic, nonphenolic, and inorganic profiles of three Tilia sp. types from different harvesting locations, (3) preparation of Ag-AgCl NPs using a mixture of citric and protocatechuic acids based on chromatographic evaluation, and (4) comparison of Tilia-based and organic acid-based syntheses. Our research confirms that the Tilia organic and inorganic profiles in biomasses are influenced by the harvesting location, and the three sites influenced both the morphology and final NP size. Our processing method was uniform, and this enabled great Ag-AgCl NP reproducibility for each specific biomass. We were then able to prove that the simplified organic acid-based synthesis produced even smaller NPs than Tilia-based synthesis. These findings provide better understanding of the significant influence on NP final properties resulting from other organic acids contained in the linden.
Zobrazit více v PubMed
Vukusic P.; Sambles J. R. Photonic Structures in Biology. Nature 2003, 424, 852–855. 10.1038/nature01941. PubMed DOI
Siddiqi K. S.; Husen A.; Rao R. A. K. A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties. J. Nanobiotechnol. 2018, 16, 14.10.1186/s12951-018-0334-5. PubMed DOI PMC
Dauthal P.; Mukhopadhyay M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 2016, 55, 9557–9577. 10.1021/acs.iecr.6b00861. DOI
Mittal A. K.; Chisti Y.; Banerjee U. C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346–356. 10.1016/j.biotechadv.2013.01.003. PubMed DOI
Oniszczuk A.; Podgórski R. Influence of Different Extraction Methods on the Quantification of Selected Flavonoids and Phenolic Acids from Tilia Cordata Inflorescence. Ind. Crops Prod. 2015, 76, 509–514. 10.1016/j.indcrop.2015.07.003. DOI
Karioti A.; Chiarabini L.; Alachkar A.; Fawaz Chehna M.; Vincieri F. F.; Bilia A. R. HPLC–DAD and HPLC–ESI-MS Analyses of Tiliae Flos and Its Preparations. J. Pharm. Biomed. Anal. 2014, 100, 205–214. 10.1016/j.jpba.2014.08.010. PubMed DOI
Aguirre-Hernández E.; González-Trujano M. E.; Martínez A. L.; Moreno J.; Kite G.; Terrazas T.; Soto-Hernández M. HPLC/MS Analysis and Anxiolytic-like Effect of Quercetin and Kaempferol Flavonoids from Tilia Americana Var. Mexicana. J. Ethnopharmacol. 2010, 127, 91–97. 10.1016/j.jep.2009.09.044. PubMed DOI
Truic̆a G.; Teodor E. D.; Radu G. L. Organic Acids Assesments in Medicinal Plants by Capillary Electrophoresis. Rev. Roum. Chim. 2013, 58, 809–814.
Jain S.; Mehata M. S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and Their Enhanced Antibacterial Property. Sci. Rep. 2017, 7, 15867.10.1038/s41598-017-15724-8. PubMed DOI PMC
Alavi M.; Karimi N. Biosynthesis of Ag and Cu NPs by Secondary Metabolites of Usnic Acid and Thymol with Biological Macromolecules Aggregation and Antibacterial Activities against Multi Drug Resistant (MDR) Bacteria. Int. J. Biol. Macromol. 2019, 128, 893–901. 10.1016/j.ijbiomac.2019.01.177. PubMed DOI
Vijayaraghavan K.; Mahadevan A.; Sathishkumar M.; Pavagadhi S.; Balasubramanian R. Biosynthesis of Au(0) from Au(III) via Biosorption and Bioreduction Using Brown Marine Alga Turbinaria Conoides. Chem. Eng. J. 2011, 167, 5.10.1016/j.cej.2010.12.027. DOI
Vijayaraghavan K.; Kamala Nalini S. P. Biotemplates in the Green Synthesis of Silver Nanoparticles. Biotechnol. J. 2010, 5, 1098–1110. 10.1002/biot.201000167. PubMed DOI
Jadhav K.; Deore S.; Dhamecha D.; Hr R.; Jagwani S.; Jalalpure S.; Bohara R. Phytosynthesis of Silver Nanoparticles: Characterization, Biocompatibility Studies, and Anticancer Activity. ACS Biomater. Sci. Eng. 2018, 4, 892–899. 10.1021/acsbiomaterials.7b00707. PubMed DOI
Kuppusamy P.; Ichwan S. J. A.; Parine N. R.; Yusoff M. M.; Maniam G. P.; Govindan N. Intracellular Biosynthesis of Au and Ag Nanoparticles Using Ethanolic Extract of Brassica Oleracea L. and Studies on Their Physicochemical and Biological Properties. J. Environ. Sci. 2015, 29, 151–157. 10.1016/j.jes.2014.06.050. PubMed DOI
Geethalakshmi R.; Sarada D. V. L. Characterization and Antimicrobial Activity of Gold and Silver Nanoparticles Synthesized Using Saponin Isolated from Trianthema Decandra L. Ind. Crops Prod. 2013, 51, 107–115. 10.1016/j.indcrop.2013.08.055. DOI
Edison T. J. I.; Sethuraman M. G. Biogenic Robust Synthesis of Silver Nanoparticles Using Punica Granatum Peel and Its Application as a Green Catalyst for the Reduction of an Anthropogenic Pollutant 4-Nitrophenol. Spectrochim. Acta, Part A 2013, 104, 262–264. 10.1016/j.saa.2012.11.084. PubMed DOI
Saha P.; Mahiuddin M.; Islam A. B. M. N.; Ochiai B. Biogenic Synthesis and Catalytic Efficacy of Silver Nanoparticles Based on Peel Extracts of Citrus Macroptera Fruit. ACS Omega 2021, 6, 18260–18268. 10.1021/acsomega.1c02149. PubMed DOI PMC
Equiza M. A.; Calvo-Polanco M.; Cirelli D.; Señorans J.; Wartenbe M.; Saunders C.; Zwiazek J. J. Long-Term Impact of Road Salt (NaCl) on Soil and Urban Trees in Edmonton, Canada. Urban For. Urban Greening 2017, 21, 16–28. 10.1016/j.ufug.2016.11.003. DOI
Drzewiecka K.; Piechalak A.; Goliński P.; Gąsecka M.; Magdziak Z.; Szostek M.; Budzyńska S.; Niedzielski P.; Mleczek M. Differences of Acer Platanoides L. and Tilia Cordata Mill. Response Patterns/Survival Strategies during Cultivation in Extremely Polluted Mining Sludge - A Pot Trial. Chemosphere 2019, 229, 589–601. 10.1016/j.chemosphere.2019.05.051. PubMed DOI
Sienkiewicz-Paderewska D.; Dmuchowski W.; Baczewska A. H.; Brągoszewska P.; Gozdowski D. The Effect of Salt Stress on Lime Aphid Abundance on Crimean Linden (Tilia ‘Euchlora’) Leaves. Urban For. Urban Greening 2017, 21, 74–79. 10.1016/j.ufug.2016.11.010. DOI
Chen W.; He Z. L.; Yang X. E.; Mishra S.; Stoffella P. J. Chlorine Nutrition of Higher Plants: Progress and Perspectives. J. Plant Nutr. 2010, 33, 943–952. 10.1080/01904160903242417. DOI
Wedin W. F.; Struckmeyer B. E. Effects of Chloride and Sulfate Ions on the Growth, Leaf Burn, Composition and Anatomical Structure of Tobacco (Nicotiana Tabacum L.). Plant Physiol. 1958, 33, 133–139. 10.1104/pp.33.2.133. PubMed DOI PMC
Matula J. The Effect of Chloride and Sulphate Application to Soil on Changes in Nutrient Content in Barley Shoot Biomass at an Early Phase of Growth. Plant, Soil Environ. 2004, 50, 295–302. 10.17221/4035-PSE. DOI
Cittan M.; Altuntaş E.; Çelik A. Evaluation of Antioxidant Capacities and Phenolic Profiles in Tilia Cordata Fruit Extracts: A Comparative Study to Determine the Efficiency of Traditional Hot Water Infusion Method. Ind. Crops Prod. 2018, 122, 553–558. 10.1016/j.indcrop.2018.06.044. DOI
Ghodake G.; Shinde S.; Kadam A.; Saratale R. G.; Saratale G. D.; Syed A.; Shair O.; Alsaedi M.; Kim D.-Y. Gallic Acid-Functionalized Silver Nanoparticles as Colorimetric and Spectrophotometric Probe for Detection of Al3+ in Aqueous Medium. J. Ind. Eng. Chem. 2020, 82, 243–253. 10.1016/j.jiec.2019.10.019. DOI
Guo D.; Dou D.; Ge L.; Huang Z.; Wang L.; Gu N. A Caffeic Acid Mediated Facile Synthesis of Silver Nanoparticles with Powerful Anti-Cancer Activity. Colloids Surf., B 2015, 134, 229–234. 10.1016/j.colsurfb.2015.06.070. PubMed DOI
Umadevi M.; Bindhu M. R.; Sathe V. A Novel Synthesis of Malic Acid Capped Silver Nanoparticles Using Solanum Lycopersicums Fruit Extract. J. Mater. Sci. Technol. 2013, 29, 317–322. 10.1016/j.jmst.2013.02.002. DOI
Mittal A. K.; Kumar S.; Banerjee U. C. Quercetin and Gallic Acid Mediated Synthesis of Bimetallic (Silver and Selenium) Nanoparticles and Their Antitumor and Antimicrobial Potential. J. Colloid Interface Sci. 2014, 431, 194–199. 10.1016/j.jcis.2014.06.030. PubMed DOI
Kim D.-Y.; Suk Sung J.; Kim M.; Ghodake G. Rapid Production of Silver Nanoparticles at Large-Scale Using Gallic Acid and Their Antibacterial Assessment. Mater. Lett. 2015, 155, 62–64. 10.1016/j.matlet.2015.04.138. DOI
Dilshad E.; Bibi M.; Sheikh N. A.; Tamrin K. F.; Mansoor Q.; Maqbool Q.; Nawaz M. Synthesis of Functional Silver Nanoparticles and Microparticles with Modifiers and Evaluation of Their Antimicrobial, Anticancer, and Antioxidant Activity. J. Funct. Biomater. 2020, 11, 76.10.3390/jfb11040076. PubMed DOI PMC
Zhang Y.; Liu S.; Wang L.; Qin X.; Tian J.; Lu W.; Chang G.; Sun X. One-Pot Green Synthesis of Ag Nanoparticles-Graphene Nanocomposites and Their Applications in SERS, H2O2, and Glucose Sensing. RSC Adv. 2012, 2, 538–545. 10.1039/C1RA00641J. DOI
Petro-Turza M. Flavor of Tomato and Tomato Products. Food Rev. Int. 1986, 2, 309–351. 10.1080/87559128609540802. DOI
López-Bucio J.; Nieto-Jacobo M. F.; Ramírez-Rodríguez V.; Herrera-Estrella L. Organic Acid Metabolism in Plants: From Adaptive Physiology to Transgenic Varieties for Cultivation in Extreme Soils. Plant Sci. 2000, 160, 1–13. 10.1016/S0168-9452(00)00347-2. PubMed DOI
Dias M. I.; Sousa M. J.; Alves R. C.; Ferreira I. C. F. R. Exploring Plant Tissue Culture to Improve the Production of Phenolic Compounds: A Review. Ind. Crops Prod. 2016, 82, 9–22. 10.1016/j.indcrop.2015.12.016. DOI
Khokhar S.; Owusu Apenten R. K. Iron Binding Characteristics of Phenolic Compounds: Some Tentative Structure–Activity Relations. Food Chem. 2003, 81, 133–140. 10.1016/S0308-8146(02)00394-1. DOI
Atoui A. K.; Mansouri A.; Boskou G.; Kefalas P. Tea and Herbal Infusions: Their Antioxidant Activity and Phenolic Profile. Food Chem. 2005, 89, 27–36. 10.1016/j.foodchem.2004.01.075. DOI
Babenko L. M.; Smirnov O. E.; Romanenko K. O.; Trunova O. K.; Kosakivska I. V. Phenolic Compounds in Plants: Biogenesis and Functions. Ukr. Biochem. J. 2019, 91, 5–18. 10.15407/ubj91.03.005. DOI
Vilamová Z.; Konvičková Z.; Mikeš P.; Holišová V.; Mančík P.; Dobročka E.; Kratošová G.; Seidlerová J. Ag-AgCl Nanoparticles Fixation on Electrospun PVA Fibres: Technological Concept and Progress. Sci. Rep. 2019, 9, 15520.10.1038/s41598-019-51642-7. PubMed DOI PMC
Doane T. L.; Chuang C. H.; Hill R. J.; Burda C. Nanoparticle ζ -Potentials. Acc. Chem. Res. 2012, 45, 317–326. 10.1021/ar200113c. PubMed DOI
Xia Y.; Xiong Y.; Lim B.; Skrabalak S. E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?. Angew. Chem., Int. Ed. 2009, 48, 60–103. 10.1002/anie.200802248. PubMed DOI PMC
Boldyrev V. V. Thermal Decomposition of Silver Oxalate. Thermochim. Acta 2002, 388, 63–90. 10.1016/S0040-6031(02)00044-8. DOI
Franceschi V. R.; Nakata P. A. Calcium Oxalate in Plants: Formation and Function. Annu. Rev. Plant Biol. 2005, 56, 41–71. 10.1146/annurev.arplant.56.032604.144106. PubMed DOI
Kobayashi K.; Hattori T.; Honda Y.; Kirimura K. Oxalic Acid Production by Citric Acid-Producing Aspergillus Niger Overexpressing the Oxaloacetate Hydrolase Gene OahA. J. Ind. Microbiol. Biotechnol. 2014, 41, 749–756. 10.1007/s10295-014-1419-2. PubMed DOI
Konvičková Z.; Holišová V.; Kolenčík M.; Niide T.; Kratošová G.; Umetsu M.; Seidlerová J. Phytosynthesis of Colloidal Ag-AgCl Nanoparticles Mediated by Tilia Sp. Leachate, Evaluation of Their Behaviour in Liquid Phase and Catalytic Properties. Colloid Polym. Sci. 2018, 677.10.1007/s00396-018-4290-2. DOI
Devi T. B.; Begum S.; Ahmaruzzaman M. Photo-Catalytic Activity of Plasmonic Ag@AgCl Nanoparticles (Synthesized via a Green Route) for the Effective Degradation of Victoria Blue B from Aqueous Phase. J. Photochem. Photobiol., B 2016, 160, 260–270. 10.1016/j.jphotobiol.2016.03.033. PubMed DOI
Konvičková Z.; Barabaszová K. Č.; Holišová V.; Kratošová G.; Seidlerová J. Phytosynthesis of Ag, ZnO and ZrO2 Nanoparticles Using Linden: Changes in Their Physical-Chemical Nature Over Time. J. Nanosci. Nanotechnol. 2019, 19, 7926–7933. 10.1166/jnn.2019.15854. PubMed DOI