• This record comes from PubMed

Towards dielectric relaxation at a single molecule scale

. 2022 Feb 21 ; 12 (1) : 2865. [epub] 20220221

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
CoG 771193 European Research Council - International
LIT 2016-1-ADV-002 Government of the Province of Upper Austria together with Johannes Kepler University Linz
18-20433S Czech Science Foundation
61388963 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences

Links

PubMed 35190585
PubMed Central PMC8861178
DOI 10.1038/s41598-022-06684-9
PII: 10.1038/s41598-022-06684-9
Knihovny.cz E-resources

Dielectric relaxation lies at the heart of well-established techniques of dielectric spectroscopy essential to diverse fields of research and technology. We report an experimental route for increasing the sensitivity of dielectric spectroscopy ultimately towards the scale of a single molecule. We use the method of radio frequency scanning tunneling microscopy to excite a single molecule junction based on a polar substituted helicene molecule by an electric field oscillating at 2-5 GHz. We detect the dielectric relaxation of the single molecule junction indirectly via its effect of power dissipation, which causes lateral displacement. From our data we determine a corresponding relaxation time of about 300 ps-consistent with literature values of similar helicene derivatives obtained by conventional methods of dielectric spectroscopy.

See more in PubMed

Jonscher AK. Dielectric relaxation in solids. J. Phys. D Appl. Phys. 1999;32:R57–R70. doi: 10.1088/0022-3727/32/14/201. DOI

Asami K. Characterization of heterogeneous systems by dielectric spectroscopy. Prog. Polym. Sci. 2002;27:1617–1659. doi: 10.1016/S0079-6700(02)00015-1. DOI

Koch R, Müllegger S. Molecular Architectonics, Chap. Mechanical and Magnetic Single-Molecule Excitations by Radio-Frequency Scanning Tunneling Microscopy. Springer; 2017. pp. 187–218.

Kemiktarak U, Ndukum T, Schwab KC, Ekinci KL. Radio-frequency scanning tunnelling microscopy. Nature. 2007;450:85–89. doi: 10.1038/nature06238. PubMed DOI

Müllegger S, et al. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance. Phys. Rev. Lett. 2014;113:133001. doi: 10.1103/PhysRevLett.113.133001. PubMed DOI

Baumann S, et al. Electron paramagnetic resonance of individual atoms on a surface. Science. 2015;350:417–420. doi: 10.1126/science.aac8703. PubMed DOI

Seifert TS, et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope driven by a radio-frequency antenna at 4 k. Phys. Rev. Res. 2020;2:0130312. doi: 10.1103/PhysRevResearch.2.013032. DOI

Manassen Y, Hamers RJ, Demuth JE, Castellano AJ., Jr Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 1989;62:2531–2534. doi: 10.1103/PhysRevLett.62.2531. PubMed DOI

Natterer FD, et al. Reading and writing single-atom magnets. Nature. 2017;543:226–228. doi: 10.1038/nature21371. PubMed DOI

Veldman L, et al. Free coherent evolution of a coupled atomic spin system initialized by electron scattering. Science. 2021;372:964–968. doi: 10.1126/science.abg8223. PubMed DOI

Herve M, Peter M, Balashov T, Wulfhekel W. Towards laterally resolved ferromagnetic resonance with spin-polarized scanning tunneling microscopy. Nanomaterials. 2019;9:827. doi: 10.3390/nano9060827. PubMed DOI PMC

Müllegger S, et al. Radio-wave oscillations of molecular-chain resonators. Phys. Rev. Lett. 2014;112:117201. doi: 10.1103/PhysRevLett.112.117201. PubMed DOI

Vacek J, Vacek Chocholoušová J, Stará IG, Starý I, Dubi Y. Mechanical tuning of conductance and thermopower in helicene molecular junctions. Nanoscale. 2015;7:8793–8802. doi: 10.1039/C5NR01297J. PubMed DOI

Stetsovych O, et al. Large converse piezoelectric effect measured on a single molecule on a metallic surface. J. Am. Chem. Soc. 2018;140:940–946. doi: 10.1021/jacs.7b08729. PubMed DOI

Xiang D, Wang X, Jia C, Lee T, Guo X. Molecular-scale electronics: From concept to function. Chem. Rev. 2016;116:4318–4440. doi: 10.1021/acs.chemrev.5b00680. PubMed DOI

Eiger D, Schweizer EK. Positioning single atoms with a scanning tunnelling microscope. Nature. 1990;344:524–526. doi: 10.1038/344524a0. DOI

Jung TA, Schlittler RR, Gimzewski JK, Tang H, Joachim C. Controlled room-temperature positioning of individual molecules: Molecular flexure and motion. Science. 1996;271:181–184. doi: 10.1126/science.271.5246.181. DOI

Kwan Chi K. Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes. Elsevier Academic Press; 2004.

Gingras M. One hundred years of helicene chemistry. Part 3: Applications and properties of carbohelicenes. Chem. Soc. Rev. 2013;42:1051–1095. doi: 10.1039/C2CS35134J. PubMed DOI

Chen CF, Shen Y. Helicene Chemistry. Springer; 2017.

Daul CA, Ciofini I, Weber V. Investigation of nlo properties of substituted (m)-tetrathia-[7]-helicenes by semiempirical and dft methods. Int. J. Quantum Chem. 2002;91:297–302. doi: 10.1002/qua.10444. DOI

Botek E, et al. Hyper-Rayleigh scattering of neutral and charged helicenes. Chem. Phys. Lett. 2005;412:274–279. doi: 10.1016/j.cplett.2005.06.121. DOI

Atkins P, Friedman R. Molecular Quantum Mechanics. Oxford University Press; 2011.

Arkhipov V, Zavidonov AY. Orientation relaxation of a water molecule. J. Mol. Liq. 2003;106(2–3):155–165. doi: 10.1016/S0167-7322(03)00104-1. DOI

Kindt JT, Schmuttenmaer CA. Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 1996;100:10373–10379. doi: 10.1021/jp960141g. DOI

Petong P, Pottel R, Kaatze U. Dielectric relaxation of h-bonded liquids. Mixtures of ethanol and n-hexanol at different compositions and temperatures. J. Phys. Chem. A. 1999;103:6114–6121. doi: 10.1021/jp991046l. DOI

Launay JP, Verdaguer M. Electrons in Molecules. Oxford University Press; 2014.

Fröhlich H. Theory of Dielectrics. Oxford University Press; 1946.

Coffey WT. Dielectric relaxation: An overview. J. Mol. Liq. 2004;114:5–25. doi: 10.1016/j.molliq.2004.02.002. DOI

Müllegger S, Das AK, Mayr K, Koch R. Radio-frequency excitation of single molecules by scanning tunnelling microscopy. Nanotechnology. 2014;25:135705. doi: 10.1088/0957-4484/25/13/135705. PubMed DOI

Natterer FD, Patthey F, Brune H. Resonant-enhanced spectroscopy of molecular rotations with a scanning tunneling microscope. ACS Nano. 2014;8:7099–7105. doi: 10.1021/nn501999k. PubMed DOI

Kitagawa K, Morita T, Kimura S. A helical molecule that exhibits two lengths in response to an applied potential. Angew. Chem. Int. Ed. 2005;44:6330–6333. doi: 10.1002/anie.200502240. PubMed DOI

Feigl S, Vranik R, Wit B, Müllegger S. Frequency-independent voltage amplitude across a tunnel junction. Rev. Sci. Instrum. 2021;92:043710. doi: 10.1063/5.0035388. PubMed DOI

Berndt R, Li J, Schneider WD, Crampin S. Surface-state linewidth from scanning tunnelling spectroscopy. Appl. Phys. A. 1999;69:503–506. doi: 10.1007/s003390051453. DOI

Krieger W, Suzuki T, Völcker M. Generation of microwave radiation in the tunneling junction of a scanning tunneling microscope. Phys. Rev. B. 1990;41:10229–10232. doi: 10.1103/PhysRevB.41.10229. PubMed DOI

Paul W, Baumann S, Lutz CP, Heinrich AJ. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM. Rev. Sci. Instrum. 2016;87:074703. doi: 10.1063/1.4955446. PubMed DOI

Kresse G, Furthmueller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Perdew JP, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 1992;46:6671–6687. doi: 10.1103/PhysRevB.46.6671. PubMed DOI

Ortmann F, Bechstedt F, Schmidt WG. Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B. 2006;73:205101. doi: 10.1103/PhysRevB.73.205101. DOI

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...