Towards dielectric relaxation at a single molecule scale
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
CoG 771193
European Research Council - International
LIT 2016-1-ADV-002
Government of the Province of Upper Austria together with Johannes Kepler University Linz
18-20433S
Czech Science Foundation
61388963
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
PubMed
35190585
PubMed Central
PMC8861178
DOI
10.1038/s41598-022-06684-9
PII: 10.1038/s41598-022-06684-9
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Dielectric relaxation lies at the heart of well-established techniques of dielectric spectroscopy essential to diverse fields of research and technology. We report an experimental route for increasing the sensitivity of dielectric spectroscopy ultimately towards the scale of a single molecule. We use the method of radio frequency scanning tunneling microscopy to excite a single molecule junction based on a polar substituted helicene molecule by an electric field oscillating at 2-5 GHz. We detect the dielectric relaxation of the single molecule junction indirectly via its effect of power dissipation, which causes lateral displacement. From our data we determine a corresponding relaxation time of about 300 ps-consistent with literature values of similar helicene derivatives obtained by conventional methods of dielectric spectroscopy.
Institute for mathematics and physics University of Stavanger Stavanger Norway
Institute of Semiconductor and Solid State Physics Johannes Kepler University Linz Linz Austria
See more in PubMed
Jonscher AK. Dielectric relaxation in solids. J. Phys. D Appl. Phys. 1999;32:R57–R70. doi: 10.1088/0022-3727/32/14/201. DOI
Asami K. Characterization of heterogeneous systems by dielectric spectroscopy. Prog. Polym. Sci. 2002;27:1617–1659. doi: 10.1016/S0079-6700(02)00015-1. DOI
Koch R, Müllegger S. Molecular Architectonics, Chap. Mechanical and Magnetic Single-Molecule Excitations by Radio-Frequency Scanning Tunneling Microscopy. Springer; 2017. pp. 187–218.
Kemiktarak U, Ndukum T, Schwab KC, Ekinci KL. Radio-frequency scanning tunnelling microscopy. Nature. 2007;450:85–89. doi: 10.1038/nature06238. PubMed DOI
Müllegger S, et al. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance. Phys. Rev. Lett. 2014;113:133001. doi: 10.1103/PhysRevLett.113.133001. PubMed DOI
Baumann S, et al. Electron paramagnetic resonance of individual atoms on a surface. Science. 2015;350:417–420. doi: 10.1126/science.aac8703. PubMed DOI
Seifert TS, et al. Single-atom electron paramagnetic resonance in a scanning tunneling microscope driven by a radio-frequency antenna at 4 k. Phys. Rev. Res. 2020;2:0130312. doi: 10.1103/PhysRevResearch.2.013032. DOI
Manassen Y, Hamers RJ, Demuth JE, Castellano AJ., Jr Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 1989;62:2531–2534. doi: 10.1103/PhysRevLett.62.2531. PubMed DOI
Natterer FD, et al. Reading and writing single-atom magnets. Nature. 2017;543:226–228. doi: 10.1038/nature21371. PubMed DOI
Veldman L, et al. Free coherent evolution of a coupled atomic spin system initialized by electron scattering. Science. 2021;372:964–968. doi: 10.1126/science.abg8223. PubMed DOI
Herve M, Peter M, Balashov T, Wulfhekel W. Towards laterally resolved ferromagnetic resonance with spin-polarized scanning tunneling microscopy. Nanomaterials. 2019;9:827. doi: 10.3390/nano9060827. PubMed DOI PMC
Müllegger S, et al. Radio-wave oscillations of molecular-chain resonators. Phys. Rev. Lett. 2014;112:117201. doi: 10.1103/PhysRevLett.112.117201. PubMed DOI
Vacek J, Vacek Chocholoušová J, Stará IG, Starý I, Dubi Y. Mechanical tuning of conductance and thermopower in helicene molecular junctions. Nanoscale. 2015;7:8793–8802. doi: 10.1039/C5NR01297J. PubMed DOI
Stetsovych O, et al. Large converse piezoelectric effect measured on a single molecule on a metallic surface. J. Am. Chem. Soc. 2018;140:940–946. doi: 10.1021/jacs.7b08729. PubMed DOI
Xiang D, Wang X, Jia C, Lee T, Guo X. Molecular-scale electronics: From concept to function. Chem. Rev. 2016;116:4318–4440. doi: 10.1021/acs.chemrev.5b00680. PubMed DOI
Eiger D, Schweizer EK. Positioning single atoms with a scanning tunnelling microscope. Nature. 1990;344:524–526. doi: 10.1038/344524a0. DOI
Jung TA, Schlittler RR, Gimzewski JK, Tang H, Joachim C. Controlled room-temperature positioning of individual molecules: Molecular flexure and motion. Science. 1996;271:181–184. doi: 10.1126/science.271.5246.181. DOI
Kwan Chi K. Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes. Elsevier Academic Press; 2004.
Gingras M. One hundred years of helicene chemistry. Part 3: Applications and properties of carbohelicenes. Chem. Soc. Rev. 2013;42:1051–1095. doi: 10.1039/C2CS35134J. PubMed DOI
Chen CF, Shen Y. Helicene Chemistry. Springer; 2017.
Daul CA, Ciofini I, Weber V. Investigation of nlo properties of substituted (m)-tetrathia-[7]-helicenes by semiempirical and dft methods. Int. J. Quantum Chem. 2002;91:297–302. doi: 10.1002/qua.10444. DOI
Botek E, et al. Hyper-Rayleigh scattering of neutral and charged helicenes. Chem. Phys. Lett. 2005;412:274–279. doi: 10.1016/j.cplett.2005.06.121. DOI
Atkins P, Friedman R. Molecular Quantum Mechanics. Oxford University Press; 2011.
Arkhipov V, Zavidonov AY. Orientation relaxation of a water molecule. J. Mol. Liq. 2003;106(2–3):155–165. doi: 10.1016/S0167-7322(03)00104-1. DOI
Kindt JT, Schmuttenmaer CA. Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 1996;100:10373–10379. doi: 10.1021/jp960141g. DOI
Petong P, Pottel R, Kaatze U. Dielectric relaxation of h-bonded liquids. Mixtures of ethanol and n-hexanol at different compositions and temperatures. J. Phys. Chem. A. 1999;103:6114–6121. doi: 10.1021/jp991046l. DOI
Launay JP, Verdaguer M. Electrons in Molecules. Oxford University Press; 2014.
Fröhlich H. Theory of Dielectrics. Oxford University Press; 1946.
Coffey WT. Dielectric relaxation: An overview. J. Mol. Liq. 2004;114:5–25. doi: 10.1016/j.molliq.2004.02.002. DOI
Müllegger S, Das AK, Mayr K, Koch R. Radio-frequency excitation of single molecules by scanning tunnelling microscopy. Nanotechnology. 2014;25:135705. doi: 10.1088/0957-4484/25/13/135705. PubMed DOI
Natterer FD, Patthey F, Brune H. Resonant-enhanced spectroscopy of molecular rotations with a scanning tunneling microscope. ACS Nano. 2014;8:7099–7105. doi: 10.1021/nn501999k. PubMed DOI
Kitagawa K, Morita T, Kimura S. A helical molecule that exhibits two lengths in response to an applied potential. Angew. Chem. Int. Ed. 2005;44:6330–6333. doi: 10.1002/anie.200502240. PubMed DOI
Feigl S, Vranik R, Wit B, Müllegger S. Frequency-independent voltage amplitude across a tunnel junction. Rev. Sci. Instrum. 2021;92:043710. doi: 10.1063/5.0035388. PubMed DOI
Berndt R, Li J, Schneider WD, Crampin S. Surface-state linewidth from scanning tunnelling spectroscopy. Appl. Phys. A. 1999;69:503–506. doi: 10.1007/s003390051453. DOI
Krieger W, Suzuki T, Völcker M. Generation of microwave radiation in the tunneling junction of a scanning tunneling microscope. Phys. Rev. B. 1990;41:10229–10232. doi: 10.1103/PhysRevB.41.10229. PubMed DOI
Paul W, Baumann S, Lutz CP, Heinrich AJ. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM. Rev. Sci. Instrum. 2016;87:074703. doi: 10.1063/1.4955446. PubMed DOI
Kresse G, Furthmueller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Perdew JP, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 1992;46:6671–6687. doi: 10.1103/PhysRevB.46.6671. PubMed DOI
Ortmann F, Bechstedt F, Schmidt WG. Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B. 2006;73:205101. doi: 10.1103/PhysRevB.73.205101. DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI