Toward 3D dose verification of an electronic brachytherapy source with a plastic scintillation detector
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
18NRM02 PRISM-eBT
EMPIR from Participating States and from the European Union's Horizon 2020 research and innovation Programme
NNF19OC0058756
Novo Nordisk Fonden
PubMed
35196404
PubMed Central
PMC9314913
DOI
10.1002/mp.15568
Knihovny.cz E-resources
- Keywords
- Monte Carlo dosimetry, dose verification, electronic brachytherapy, plastic scintillators,
- MeSH
- Brachytherapy * MeSH
- Electronics MeSH
- Monte Carlo Method MeSH
- Plastics MeSH
- Radiometry MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Plastics MeSH
- Water MeSH
BACKGROUND: Electronic brachytherapy (eBT) is considered a safe treatment with good outcomes. However, eBT lacks standardized and independent dose verification, which could impede future use. PURPOSE: To validate the 3D dose-to-water distribution of an electronic brachytherapy (eBT) source using a small-volume plastic scintillation detector (PSD). METHODS: The relative dose distribution of a Papillon 50 (P50) (Ariane Medical Systems, UK) eBT source was measured in water with a PSD consisting of a cylindrical scintillating BCF-12 fiber (length: 0.5 mm, Ø: 1 mm) coupled to a photodetector via an optical fiber. The measurements were performed with the PSD mounted on a motorized stage in a water phantom (MP3) (PTW, Germany). This allowed the sensitive volume of the PSD to be moved to predetermined positions relative to the P50 applicator, which pointed vertically downward while just breaching the water surface. The percentage depth-dose (PDD) was measured from 0 to 50 mm source-to-detector distance (SDD) in 1-3 mm steps. Dose profiles were measured along two perpendicular axes at five different SDDs with step sizes down to 0.5 mm. Characterization of the PSD consisted of determining the energy correction through Monte Carlo (MC) simulation and by measuring the stability and dose rate linearity using a well-type ionization chamber as a reference. The measured PDD and profiles were validated with corresponding MC simulations. RESULTS: The measured and simulated PDD curves agreed within 2% (except at 0 mm and 43 mm depth) after the PSD measurements were corrected for energy dependency. The absorbed dose decreased by a factor of 2 at 7 mm depth and by a factor of 10 at 26 mm depth. The measured dose profiles showed dose gradients at the profile edges of more than 50%/mm at 5 mm depth and 15%/mm at 50 mm depth. The measured profile widths increased 0.66 mm per 1 mm depth, while the simulated profile widths increased 0.74 mm per 1 mm depth. An azimuthal dependency of > 10% was observed in the dose at 10 mm distance from the beam center. The total uncertainty of the measured relative dose is < 2.5% with a positional uncertainty of 0.4 mm. The measurements for a full 3D dose characterization (PDD and profiles) can be carried out within 8 h, the limiting factor being cooling of the P50. CONCLUSION: The PSD and MP3 water phantoms provided a method to independently verify the relative 3D dose distribution in water of an eBT source.
Department of Clinical Medicine Aarhus University Aarhus Denmark
Department of Oncology Aarhus University Hospital Aarhus N Denmark
Photon Dosimetry Laboratory Czech Metrology Institute Prague Czech Republic
See more in PubMed
Hensley FW. Present state and issues in IORT physics. Radiat Oncol. 2017; 12(1): 37. 10.1186/s13014-016-0754-z. PubMed DOI PMC
Ma CM, Coffey CW, DeWerd LA, et al. AAPM protocol for 40–300 kV X‐ray beam dosimetry in radiotherapy and radiobiology. Med Phys. 2001; 28(6): 868–893. 10.1118/1.1374247. PubMed DOI
Eaton DJ. Electronic brachytherapy—current status and future directions. Br J Radiol. 2015; 88(1049): 20150002. 10.1259/bjr.20150002. PubMed DOI PMC
Brahme A. Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol. 1984; 23(5): 379–391. 10.3109/02841868409136037. PubMed DOI
Croce O, Hachem S, Franchisseur E, Marcié S, Gérard JP, Bordy JM. Contact radiotherapy using a 50 kV X‐ray system: evaluation of relative dose distribution with the Monte Carlo code PENELOPE and comparison with measurements. Radiat Phys Chem. 2012; 81(6): 609–617. 10.1016/j.radphyschem.2012.01.033. DOI
Hill R, Mo Z, Haque M, Baldock C. An evaluation of ionization chambers for the relative dosimetry of kilovoltage X‐ray beams. Med Phys. 2009; 36(9 Part1): 3971–3981. 10.1118/1.3183820. PubMed DOI
Watson PGF, Bekerat H, Papaconstadopoulos P, Davis S, Seuntjens J. An investigation into the INTRABEAM miniature X‐ray source dosimetry using ionization chamber and radiochromic film measurements. Med Phys. 2018; 45(9): 4274–4286. 10.1002/mp.13059. PubMed DOI
Watson PGF, Popovic M, Seuntjens J. Determination of absorbed dose to water from a miniature kilovoltage X‐ray source using a parallel‐plate ionization chamber. Phys Med Biol. 2017; 63(1): 015016. 10.1088/1361-6560/aa9560. PubMed DOI
Eaton DJ. Quality assurance and independent dosimetry for an intraoperative X‐ray device. Med Phys. 2012; 39(11): 6908–6920. 10.1118/1.4761865. PubMed DOI
Hoerner MR, Stepusin EJ, Hyer DE, Hintenlang DE. Characterizing energy dependence and count rate performance of a dual scintillator fiber‐optic detector for computed tomography. Med Phys. 2015; 42(3): 1268–1279. 10.1118/1.4906206. PubMed DOI
Hyer DE, Fisher RF, Hintenlang DE. Characterization of a water‐equivalent fiber‐optic coupled dosimeter for use in diagnostic radiology. Med Phys. 2009; 36(5): 1711–1716. 10.1118/1.3116362. PubMed DOI
Beddar AS, Mackie TR, Attix FH. Water‐equivalent plastic scintillation detectors for high‐energy beam dosimetry: iI. Properties and measurements. Phys Med Biol. 1992; 37(10): 1901–1913. 10.1088/0031-9155/37/10/007. PubMed DOI
Therriault‐Proulx F, Beaulieu L, Archambault L, Beddar S. On the nature of the light produced within PMMA optical light guides in scintillation fiber‐optic dosimetry. Phys Med Biol. 2013; 58(7): 2073–2084. 10.1088/0031-9155/58/7/2073. PubMed DOI PMC
Frelin AM, Fontbonne JM, Ban G, et al. Spectral discrimination of Čerenkov radiation in scintillating dosimeters. Med Phys. 2005; 32(9): 3000–3006. 10.1118/1.2008487. PubMed DOI
Kertzscher G, Beddar S. Inorganic scintillation detectors for 192Ir brachytherapy. Phys Med Biol. 2019; 64(22): 225018. 10.1088/1361-6560/ab421f. PubMed DOI
Archambault L, Therriault‐Proulx F, Beddar S, Beaulieu L. A mathematical formalism for hyperspectral, multipoint plastic scintillation detectors. Phys Med Biol. 2012; 57(21): 7133–7145. 10.1088/0031-9155/57/21/7133. PubMed DOI
Therriault‐Proulx F, Archambault L, Beaulieu L, Beddar S. Development of a novel multi‐point plastic scintillation detector with a single optical transmission line for radiation dose measurement. Phys Med Biol. 2012; 57(21): 7147–7159. 10.1088/0031-9155/57/21/7147. PubMed DOI PMC
Darafsheh A, Zhang R, Kanick SC, Pogue BW, Finlay JC. Spectroscopic separation of Čerenkov radiation in high‐resolution radiation fiber dosimeters. J Biomed Opt. 2015; 20(9): 095001. 10.1117/1.JBO.20.9.095001. PubMed DOI
Darafsheh A, Melzer JE, Harrington JA, Kassaee A, Finlay JC. Radiotherapy fiber dosimeter probes based on silver‐only coated hollow glass waveguides. J Biomed Opt. 2018; 23(1): 015006. 10.1117/1.JBO.23.1.015006. PubMed DOI
Beddar AS, Mackie TR, Attix FH. Water‐equivalent plastic scintillation detectors for high‐energy beam dosimetry: i. Physical characteristics and theoretical considerations. Phys Med Biol. 1992; 37(10): 1883–1900. 10.1088/0031-9155/37/10/006. PubMed DOI
Boivin J, Beddar S, Bonde C, et al. A systematic characterization of the low‐energy photon response of plastic scintillation detectors. Phys Med Biol. 2016; 61(15): 5569–5586. 10.1088/0031-9155/61/15/5569. PubMed DOI
Ebenau M, Radeck D, Bambynek M, et al. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy. Med Phys. 2016; 43(8 Part1): 4598–4606. 10.1118/1.4957348. PubMed DOI
Lessard F, Archambault L, Plamondon M, et al. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range. Med Phys. 2012; 39(9): 5308–5316. 10.1118/1.4738964. PubMed DOI PMC
Primary standards and traceable measurement methods for X‐ray emitting electronic brachytherapy devices. Accessed October 29, 2021. http://www.ebt‐empir.eu/wp‐content/uploads/Publishable‐Summary‐M18.pdf
Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012; 39(11): 6818–6837. 10.1118/1.4758060. PubMed DOI PMC
Faddegon B, Ramos‐Méndez J, Schuemann J, et al. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys Med. 2020; 72: 114–121. 10.1016/j.ejmp.2020.03.019. PubMed DOI PMC
Gérard JP, Myint AS, Croce O, et al. Renaissance of contact X‐ray therapy for treating rectal cancer. Expert Rev Med Devices. 2011; 8(4): 483–492. 10.1586/erd.11.28. PubMed DOI
Low energy electromagnetic physics ‐ Penelope | geant4.web.cern.ch. Accessed October 29, 2021. https://geant4.web.cern.ch/node/1621
Geant4 material database — book for application developers 10.7 documentation. Accessed October 29, 2021. https://geant4‐userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html
Ebert MA, Carruthers B, Lanzon PJ, et al. Dosimetry of a low‐kV intra‐operative X‐ray source using basic analytical beam models. Australas Phys Eng Sci Med. 2002; 25(3): 119–123. 10.1007/BF03178772. PubMed DOI
Beatty J, Biggs PJ, Gall K, et al. A new miniature X‐ray device for interstitial radiosurgery: dosimetry. Med Phys. 1996; 23(1): 53–62. 10.1118/1.597791. PubMed DOI
Eaton DJ, Duck S. Dosimetry measurements with an intra‐operative X‐ray device. Phys Med Biol. 2010; 55(12): N359–N369. 10.1088/0031-9155/55/12/N02. PubMed DOI
Rivard MJ, Davis SD, DeWerd LA, Rusch TW, Axelrod S. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X‐ray source: an electronic brachytherapy sourcea). Med Phys. 2006; 33(11): 4020–4032. 10.1118/1.2357021. PubMed DOI
Li Z, Chong W, Yuekun H, et al. Properties of plastic scintillators after irradiation. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2005; 552(3): 449–455. 10.1016/j.nima.2005.06.075. DOI