• This record comes from PubMed

Toward 3D dose verification of an electronic brachytherapy source with a plastic scintillation detector

. 2022 May ; 49 (5) : 3432-3443. [epub] 20220303

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
18NRM02 PRISM-eBT EMPIR from Participating States and from the European Union's Horizon 2020 research and innovation Programme
NNF19OC0058756 Novo Nordisk Fonden

BACKGROUND: Electronic brachytherapy (eBT) is considered a safe treatment with good outcomes. However, eBT lacks standardized and independent dose verification, which could impede future use. PURPOSE: To validate the 3D dose-to-water distribution of an electronic brachytherapy (eBT) source using a small-volume plastic scintillation detector (PSD). METHODS: The relative dose distribution of a Papillon 50 (P50) (Ariane Medical Systems, UK) eBT source was measured in water with a PSD consisting of a cylindrical scintillating BCF-12 fiber (length: 0.5 mm, Ø: 1 mm) coupled to a photodetector via an optical fiber. The measurements were performed with the PSD mounted on a motorized stage in a water phantom (MP3) (PTW, Germany). This allowed the sensitive volume of the PSD to be moved to predetermined positions relative to the P50 applicator, which pointed vertically downward while just breaching the water surface. The percentage depth-dose (PDD) was measured from 0 to 50 mm source-to-detector distance (SDD) in 1-3 mm steps. Dose profiles were measured along two perpendicular axes at five different SDDs with step sizes down to 0.5 mm. Characterization of the PSD consisted of determining the energy correction through Monte Carlo (MC) simulation and by measuring the stability and dose rate linearity using a well-type ionization chamber as a reference. The measured PDD and profiles were validated with corresponding MC simulations. RESULTS: The measured and simulated PDD curves agreed within 2% (except at 0 mm and 43 mm depth) after the PSD measurements were corrected for energy dependency. The absorbed dose decreased by a factor of 2 at 7 mm depth and by a factor of 10 at 26 mm depth. The measured dose profiles showed dose gradients at the profile edges of more than 50%/mm at 5 mm depth and 15%/mm at 50 mm depth. The measured profile widths increased 0.66 mm per 1 mm depth, while the simulated profile widths increased 0.74 mm per 1 mm depth. An azimuthal dependency of > 10% was observed in the dose at 10 mm distance from the beam center. The total uncertainty of the measured relative dose is < 2.5% with a positional uncertainty of 0.4 mm. The measurements for a full 3D dose characterization (PDD and profiles) can be carried out within 8 h, the limiting factor being cooling of the P50. CONCLUSION: The PSD and MP3 water phantoms provided a method to independently verify the relative 3D dose distribution in water of an eBT source.

See more in PubMed

Hensley FW. Present state and issues in IORT physics. Radiat Oncol. 2017; 12(1): 37. 10.1186/s13014-016-0754-z. PubMed DOI PMC

Ma CM, Coffey CW, DeWerd LA, et al. AAPM protocol for 40–300 kV X‐ray beam dosimetry in radiotherapy and radiobiology. Med Phys. 2001; 28(6): 868–893. 10.1118/1.1374247. PubMed DOI

Eaton DJ. Electronic brachytherapy—current status and future directions. Br J Radiol. 2015; 88(1049): 20150002. 10.1259/bjr.20150002. PubMed DOI PMC

Brahme A. Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol. 1984; 23(5): 379–391. 10.3109/02841868409136037. PubMed DOI

Croce O, Hachem S, Franchisseur E, Marcié S, Gérard JP, Bordy JM. Contact radiotherapy using a 50 kV X‐ray system: evaluation of relative dose distribution with the Monte Carlo code PENELOPE and comparison with measurements. Radiat Phys Chem. 2012; 81(6): 609–617. 10.1016/j.radphyschem.2012.01.033. DOI

Hill R, Mo Z, Haque M, Baldock C. An evaluation of ionization chambers for the relative dosimetry of kilovoltage X‐ray beams. Med Phys. 2009; 36(9 Part1): 3971–3981. 10.1118/1.3183820. PubMed DOI

Watson PGF, Bekerat H, Papaconstadopoulos P, Davis S, Seuntjens J. An investigation into the INTRABEAM miniature X‐ray source dosimetry using ionization chamber and radiochromic film measurements. Med Phys. 2018; 45(9): 4274–4286. 10.1002/mp.13059. PubMed DOI

Watson PGF, Popovic M, Seuntjens J. Determination of absorbed dose to water from a miniature kilovoltage X‐ray source using a parallel‐plate ionization chamber. Phys Med Biol. 2017; 63(1): 015016. 10.1088/1361-6560/aa9560. PubMed DOI

Eaton DJ. Quality assurance and independent dosimetry for an intraoperative X‐ray device. Med Phys. 2012; 39(11): 6908–6920. 10.1118/1.4761865. PubMed DOI

Hoerner MR, Stepusin EJ, Hyer DE, Hintenlang DE. Characterizing energy dependence and count rate performance of a dual scintillator fiber‐optic detector for computed tomography. Med Phys. 2015; 42(3): 1268–1279. 10.1118/1.4906206. PubMed DOI

Hyer DE, Fisher RF, Hintenlang DE. Characterization of a water‐equivalent fiber‐optic coupled dosimeter for use in diagnostic radiology. Med Phys. 2009; 36(5): 1711–1716. 10.1118/1.3116362. PubMed DOI

Beddar AS, Mackie TR, Attix FH. Water‐equivalent plastic scintillation detectors for high‐energy beam dosimetry: iI. Properties and measurements. Phys Med Biol. 1992; 37(10): 1901–1913. 10.1088/0031-9155/37/10/007. PubMed DOI

Therriault‐Proulx F, Beaulieu L, Archambault L, Beddar S. On the nature of the light produced within PMMA optical light guides in scintillation fiber‐optic dosimetry. Phys Med Biol. 2013; 58(7): 2073–2084. 10.1088/0031-9155/58/7/2073. PubMed DOI PMC

Frelin AM, Fontbonne JM, Ban G, et al. Spectral discrimination of Čerenkov radiation in scintillating dosimeters. Med Phys. 2005; 32(9): 3000–3006. 10.1118/1.2008487. PubMed DOI

Kertzscher G, Beddar S. Inorganic scintillation detectors for 192Ir brachytherapy. Phys Med Biol. 2019; 64(22): 225018. 10.1088/1361-6560/ab421f. PubMed DOI

Archambault L, Therriault‐Proulx F, Beddar S, Beaulieu L. A mathematical formalism for hyperspectral, multipoint plastic scintillation detectors. Phys Med Biol. 2012; 57(21): 7133–7145. 10.1088/0031-9155/57/21/7133. PubMed DOI

Therriault‐Proulx F, Archambault L, Beaulieu L, Beddar S. Development of a novel multi‐point plastic scintillation detector with a single optical transmission line for radiation dose measurement. Phys Med Biol. 2012; 57(21): 7147–7159. 10.1088/0031-9155/57/21/7147. PubMed DOI PMC

Darafsheh A, Zhang R, Kanick SC, Pogue BW, Finlay JC. Spectroscopic separation of Čerenkov radiation in high‐resolution radiation fiber dosimeters. J Biomed Opt. 2015; 20(9): 095001. 10.1117/1.JBO.20.9.095001. PubMed DOI

Darafsheh A, Melzer JE, Harrington JA, Kassaee A, Finlay JC. Radiotherapy fiber dosimeter probes based on silver‐only coated hollow glass waveguides. J Biomed Opt. 2018; 23(1): 015006. 10.1117/1.JBO.23.1.015006. PubMed DOI

Beddar AS, Mackie TR, Attix FH. Water‐equivalent plastic scintillation detectors for high‐energy beam dosimetry: i. Physical characteristics and theoretical considerations. Phys Med Biol. 1992; 37(10): 1883–1900. 10.1088/0031-9155/37/10/006. PubMed DOI

Boivin J, Beddar S, Bonde C, et al. A systematic characterization of the low‐energy photon response of plastic scintillation detectors. Phys Med Biol. 2016; 61(15): 5569–5586. 10.1088/0031-9155/61/15/5569. PubMed DOI

Ebenau M, Radeck D, Bambynek M, et al. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy. Med Phys. 2016; 43(8 Part1): 4598–4606. 10.1118/1.4957348. PubMed DOI

Lessard F, Archambault L, Plamondon M, et al. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range. Med Phys. 2012; 39(9): 5308–5316. 10.1118/1.4738964. PubMed DOI PMC

Primary standards and traceable measurement methods for X‐ray emitting electronic brachytherapy devices. Accessed October 29, 2021. http://www.ebt‐empir.eu/wp‐content/uploads/Publishable‐Summary‐M18.pdf

Perl J, Shin J, Schümann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012; 39(11): 6818–6837. 10.1118/1.4758060. PubMed DOI PMC

Faddegon B, Ramos‐Méndez J, Schuemann J, et al. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys Med. 2020; 72: 114–121. 10.1016/j.ejmp.2020.03.019. PubMed DOI PMC

Gérard JP, Myint AS, Croce O, et al. Renaissance of contact X‐ray therapy for treating rectal cancer. Expert Rev Med Devices. 2011; 8(4): 483–492. 10.1586/erd.11.28. PubMed DOI

Low energy electromagnetic physics ‐ Penelope | geant4.web.cern.ch. Accessed October 29, 2021. https://geant4.web.cern.ch/node/1621

Geant4 material database — book for application developers 10.7 documentation. Accessed October 29, 2021. https://geant4‐userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

Ebert MA, Carruthers B, Lanzon PJ, et al. Dosimetry of a low‐kV intra‐operative X‐ray source using basic analytical beam models. Australas Phys Eng Sci Med. 2002; 25(3): 119–123. 10.1007/BF03178772. PubMed DOI

Beatty J, Biggs PJ, Gall K, et al. A new miniature X‐ray device for interstitial radiosurgery: dosimetry. Med Phys. 1996; 23(1): 53–62. 10.1118/1.597791. PubMed DOI

Eaton DJ, Duck S. Dosimetry measurements with an intra‐operative X‐ray device. Phys Med Biol. 2010; 55(12): N359–N369. 10.1088/0031-9155/55/12/N02. PubMed DOI

Rivard MJ, Davis SD, DeWerd LA, Rusch TW, Axelrod S. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X‐ray source: an electronic brachytherapy sourcea). Med Phys. 2006; 33(11): 4020–4032. 10.1118/1.2357021. PubMed DOI

Li Z, Chong W, Yuekun H, et al. Properties of plastic scintillators after irradiation. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2005; 552(3): 449–455. 10.1016/j.nima.2005.06.075. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...