First genome-wide association study of esophageal atresia identifies three genetic risk loci at CTNNA3, FOXF1/FOXC2/FOXL1, and HNF1B
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35199045
PubMed Central
PMC8844277
DOI
10.1016/j.xhgg.2022.100093
PII: S2666-2477(22)00009-4
Knihovny.cz E-zdroje
- Klíčová slova
- CTNNA3, FOXF1/FOXC2/FOXL1, HNF1B, esophageal atresia (EA), genome-wide association study (GWAS), multifactorial diseases,
- Publikační typ
- časopisecké články MeSH
Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) is the most common congenital malformation of the upper digestive tract. This study represents the first genome-wide association study (GWAS) to identify risk loci for EA/TEF. We used a European case-control sample comprising 764 EA/TEF patients and 5,778 controls and observed genome-wide significant associations at three loci. On chromosome 10q21 within the gene CTNNA3 (p = 2.11 × 10-8; odds ratio [OR] = 3.94; 95% confidence interval [CI], 3.10-5.00), on chromosome 16q24 next to the FOX gene cluster (p = 2.25 × 10-10; OR = 1.47; 95% CI, 1.38-1.55) and on chromosome 17q12 next to the gene HNF1B (p = 3.35 × 10-16; OR = 1.75; 95% CI, 1.64-1.87). We next carried out an esophageal/tracheal transcriptome profiling in rat embryos at four selected embryonic time points. Based on these data and on already published data, the implicated genes at all three GWAS loci are promising candidates for EA/TEF development. We also analyzed the genetic EA/TEF architecture beyond the single marker level, which revealed an estimated single-nucleotide polymorphism (SNP)-based heritability of around 37% ± 14% standard deviation. In addition, we examined the polygenicity of EA/TEF and found that EA/TEF is less polygenic than other complex genetic diseases. In conclusion, the results of our study contribute to a better understanding on the underlying genetic architecture of ET/TEF with the identification of three risk loci and candidate genes.
Center for Mind Brain and Behavior Philipps University Marburg Marburg Germany
Center of Pediatric Surgery Hannover Hannover Medical School Hannover Germany
Clinic for Neurology Section Neurobiological Research RWTH Aachen University Clinic Aachen Germany
Cologne Center for Genomics University of Cologne Cologne Germany
Department of Clinical Chemistry and Clinical Pharmacology University of Bonn Bonn Germany
Department of Clinical Genetics Erasmus Medical Centre Rotterdam the Netherlands
Department of Developmental Genetics Max Planck Institute for Molecular Genetics Berlin Germany
Department of Digestive Tract Diseases Medical University of Lodz Lodz Poland
Department of Genomics Life and Brain Center University of Bonn Bonn Germany
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
Department of Nutrition University of North Carolina at Chapel Hill Chapel Hill NC USA
Department of Paediatric Surgery Karolinska University Hospital Stockholm Sweden
Department of Pediatric Surgery and Urology Cnopf'sche Kinderklinik Nürnberg Germany
Department of Pediatric Surgery and Urology Medical University of Bialystok Poland
Department of Pediatric Surgery and Urology University Hospital Cologne Cologne Germany
Department of Pediatric Surgery and Urology Wroclaw Medical University Wroclaw Poland
Department of Pediatric Surgery Asklepios Children's Hospital St Augustin St Augustin Germany
Department of Pediatric Surgery Children's Hospital University of Tübingen Tübingen Germany
Department of Pediatric Surgery Ernst von Bergmann Hospital Potsdam Germany
Department of Pediatric Surgery Marien Hospital Witten Ruhr University Bochum Germany
Department of Pediatric Surgery Medical Center Dortmund Dortmund Germany
Department of Pediatric Surgery Skåne University Hospital Lund Sweden
Department of Pediatric Surgery University Children's Hospital Marburg Germany
Department of Pediatric Surgery University Hospital Bonn Bonn Germany
Department of Pediatric Surgery University Medical Center Hamburg Eppendorf Hamburg Germany
Department of Pediatric Surgery University Medicine Mainz Mainz Germany
Department of Pediatric Surgery University of Leipzig Leipzig Germany
Department of Pediatrics Children's Hospital University Hospital Bonn Bonn Germany
Department of Psychiatry University of North Carolina at Chapel Hill Chapel Hill NC USA
Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
Division of Cancer Biology and Genetics Queen's University Kingston Canada
Institute of Human Genetics University Hospital of Marburg Marburg Germany
Institute of Medical Biometry Informatics and Epidemiology University of Bonn Bonn Germany
KU Leuven Leuven Brain Institute Leuven Belgium
Perioperative Medicine and Intensive Care Karolinska University Stockholm Sweden
School of Medicine Faculty of Health University of Witten Herdecke Witten Germany
Zobrazit více v PubMed
Torfs C.P., Curry C.J., Bateson T.F. Population-based study of tracheoesophageal fistula and esophageal atresia. Teratology. 1995;52:220–232. PubMed
Spitz L. Oesophageal atresia. Orphanet J. Rare Dis. 2007;2:24. PubMed PMC
David T.J., O'Callaghan S.E. Oesophageal atresia in the South West of England. J. Med. Genet. 1975;12:1–11. PubMed PMC
Geneviève D., de Pontual L., Amiel J., Sarnacki S., Lyonnet S. An overview of isolated and syndromic oesophageal atresia. Clin. Genet. 2007;71:392–399. PubMed
Brown A.K., Roddam A.W., Spitz L., Ward S.J. Oesophageal atresia, related malformations, and medical problems: a family study. Am. J. Med. Genet. 1999;85:31–37. PubMed
Shaw-Smith C. Oesophageal atresia, tracheo-oesophageal fistula, and the VACTERL association: review of genetics and epidemiology. J. Med. Genet. 2006;43:545–554. PubMed PMC
Nassar N., Leoncini E., Amar E., Arteaga-Vázquez J., Bakker M.K., Bower C., Canfield M.A., Castilla E.E., Cocchi G., Correa A., et al. Prevalence of esophageal atresia among 18 international birth defects surveillance programs. Birth Defects Res. Part A Clin. Mol. Teratol. 2012;94:893–899. PubMed PMC
Depaepe A., Dolk H., Lechat M.F. The epidemiology of tracheo-oesophageal fistula and oesophageal atresia in Europe. EUROCAT Working Group. Arch. Dis. Child. 1993;68:743–748. PubMed PMC
McMullen K.P., Karnes P.S., Moir C.R., Michels V.V. Familial recurrence of tracheoesophageal fistula and associated malformations. Am. J. Med. Genet. 1996;63:525–528. PubMed
Robert E., Mutchinick O., Mastroiacovo P., Knudsen L.B., Daltveit A.K., Castilla E.E., Lancaster P., Källén B., Cocchi G. An international collaborative study of the epidemiology of esophageal atresia or stenosis. Reprod. Toxicol. 1993;7:405–421. PubMed
Van Staey M., De Bie S., Matton M.T., De Roose J. Familial congenital esophageal atresia. Personal case report and review of the literature. Hum. Genet. 1984;66:260–266. PubMed
Warren J., Evans K., Carter C.O. Offspring of patients with tracheo-oesophageal fistula. J. Med. Genet. 1979;16:338–340. PubMed PMC
de Jong E.M., Felix J.F., de Klein A., Tibboel D. Etiology of esophageal atresia and tracheoesophageal fistula: "mind the gap". Curr. Gastroenterol. Rep. 2010;12:215–222. PubMed PMC
Klar J., Engstrand-Lilja H., Maqbool K., Mattisson J., Feuk L., Dahl N. Whole genome sequencing of familial isolated oesophagus atresia uncover shared structural variants. BMC Med. Genomics. 2020;13:85. PubMed PMC
van Bokhoven H., Celli J., van Reeuwijk J., Rinne T., Glaudemans B., van Beusekom E., Rieu P., Newbury-Ecob R.A., Chiang C., Brunner H.G. MYCN haploinsufficiency is associated with reduced brain size and intestinal atresias in Feingold syndrome. Nat. Genet. 2005;37:465–467. PubMed
Motoyama J., Liu J., Mo R., Ding Q., Post M., Hui C.C. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat. Genet. 1998;20:54–57. PubMed
Vissers L.E., van Ravenswaaij C.M., Admiraal R., Hurst J.A., de Vries B.B., Janssen I.M., van der Vliet W.A., Huys E.H., de Jong P.J., Hamel B.C., et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 2004;36:955–957. PubMed
Das S., Forer L., Schönherr S., Sidore C., Locke A.E., Kwong A., Vrieze S.I., Chew E.Y., Levy S., McGue M., et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016;48:1284–1287. PubMed PMC
Taliun D., Harris D.N., Kessler M.D., Carlson J., Szpiech Z.A., Torres R., Taliun S.A.G., Corvelo A., Gogarten S.M., Kang H.M., et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature. 2021;590:290–299. PubMed PMC
Fuchsberger C., Abecasis G.R., Hinds D.A. minimac2: faster genotype imputation. Bioinformatics. 2015;31:782–784. PubMed PMC
Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. PubMed PMC
Willer C.J., Li Y., Abecasis G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. PubMed PMC
Chiarella S.E., Rabin E.E., Ostilla L.A., Flozak A.S., Gottardi C.J. alphaT-catenin: a developmentally dispensable, disease-linked member of the alpha-catenin family. Tissue Barriers. 2018;6:e1463896. PubMed PMC
Spence J.R., Lauf R., Shroyer N.F. Vertebrate intestinal endoderm development. Dev. Dyn. 2011;240:501–520. PubMed PMC
Billmyre K.K., Hutson M., Klingensmith J. One shall become two: separation of the esophagus and trachea from the common foregut tube. Dev. Dyn. 2015;244:277–288. PubMed PMC
Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. PubMed PMC
Pruim R.J., Welch R.P., Sanna S., Teslovich T.M., Chines P.S., Gliedt T.P., Boehnke M., Abecasis G.R., Willer C.J. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–2337. PubMed PMC
Han L., Chaturvedi P., Kishimoto K., Koike H., Nasr T., Iwasawa K., Giesbrecht K., Witcher P.C., Eicher A., Haines L., et al. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat. Commun. 2020;11:4158. PubMed PMC
Stankiewicz P., Sen P., Bhatt S.S., Storer M., Xia Z., Bejjani B.A., Ou Z., Wiszniewska J., Driscoll D.J., Maisenbacher M.K., et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet. 2009;84:780–791. PubMed PMC
Ward L.D., Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–D934. PubMed PMC
Shaw-Smith C. Genetic factors in esophageal atresia, tracheo-esophageal fistula and the VACTERL association: roles for FOXF1 and the 16q24.1 FOX transcription factor gene cluster, and review of the literature. Eur. J. Med. Genet. 2010;53:6–13. PubMed PMC
Clissold R.L., Hamilton A.J., Hattersley A.T., Ellard S., Bingham C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat. Rev. Nephrol. 2015;11:102–112. PubMed
Faguer S., Chassaing N., Bandin F., Prouheze C., Arveiler B., Rooryck C., Nogier M.B., Chauveau D., Calvas P., Decramer S. A 17q12 chromosomal duplication associated with renal disease and esophageal atresia. Eur. J. Med. Genet. 2011;54:e437–e440. PubMed
Hoskins B.E., Cramer C.H., 2nd, Tasic V., Kehinde E.O., Ashraf S., Bogdanovic R., Hoefele J., Pohl M., Hildebrandt F. Missense mutations in EYA1 and TCF2 are a rare cause of urinary tract malformations. Nephrol. Dial. Transpl. 2008;23:777–779. PubMed
Kotalova R., Dusatkova P., Cinek O., Dusatkova L., Dedic T., Seeman T., Lebl J., Pruhova S. Hepatic phenotypes of HNF1B gene mutations: a case of neonatal cholestasis requiring portoenterostomy and literature review. World J. Gastroenterol. 2015;21:2550–2557. PubMed PMC
Quintero-Rivera F., Woo J.S., Bomberg E.M., Wallace W.D., Peredo J., Dipple K.M. Duodenal atresia in 17q12 microdeletion including HNF1B: a new associated malformation in this syndrome. Am. J. Med. Genet. A. 2014;164A:3076–3082. PubMed
Rentzsch P., Witten D., Cooper G.M., Shendure J., Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–D894. PubMed PMC
Moll P., Ante M., Seitz A., Reda T. QuantSeq 3′ mRNA sequencing for RNA quantification. Nat. Methods. 2014;11:972. PubMed
Durinck S., Spellman P.T., Birney E., Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009;4:1184–1191. PubMed PMC
Bulik-Sullivan B., Finucane H.K., Anttila V., Gusev A., Day F.R., Loh P.R., ReproGen Consortium. Psychiatric Genomics Consortium. Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3. Duncan L., Perry J.R., Patterson N., Robinson E.B., et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015;47:1236–1241. PubMed PMC
Watanabe K., Taskesen E., van Bochoven A., Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017;8:1826. PubMed PMC
Mangold E., Ludwig K.U., Birnbaum S., Baluardo C., Ferrian M., Herms S., Reutter H., de Assis N.A., Chawa T.A., Mattheisen M., et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate. Nat. Genet. 2010;42:24–26. PubMed
Zhang Y., Qi G., Park J.H., Chatterjee N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 2018;50:1318–1326. PubMed