Nuclear Lamins: Key Proteins for Embryonic Development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20-04465S
Czech Science Foundation
PubMed
35205065
PubMed Central
PMC8869099
DOI
10.3390/biology11020198
PII: biology11020198
Knihovny.cz E-zdroje
- Klíčová slova
- development, laminopathies, maternal factors, nuclear lamins, preimplantation embryo,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Lamins are essential components of the nuclear envelope and have been studied for decades due to their involvement in several devastating human diseases, the laminopathies. Despite intensive research, the molecular basis behind the disease state remains mostly unclear with a number of conflicting results regarding the different cellular functions of nuclear lamins being published. The field of developmental biology is no exception. Across model organisms, the types of lamins present in early mammalian development have been contradictory over the years. Due to the long half-life of the lamin proteins, which is a maternal factor that gets carried over to the zygote after fertilization, investigators are posed with challenges to dive into the functional aspects and significance of lamins in development. Due to these technical limitations, the role of lamins in early mammalian embryos is virtually unexplored. This review aims in converging results that were obtained so far in addition to the complex functions that ceases if lamins are mutated.
Zobrazit více v PubMed
Jorgensen P., Edgington N.P., Schneider B.L., Rupeš I., Tyers M., Futcher B. The Size of the Nucleus Increases as Yeast Cells Grow. Mol. Biol. Cell. 2007;18:3523–3532. doi: 10.1091/mbc.e06-10-0973. PubMed DOI PMC
Gillooly J.F., Hein A., Damiani R. Nuclear DNA Content Varies with Cell Size across Human Cell Types. Cold Spring Harb. Perspect. Biol. 2015;7:a019091. doi: 10.1101/cshperspect.a019091. PubMed DOI PMC
Sexton T., Schober H., Fraser P., Gasser S. Gene regulation through nuclear organization. Nat. Struct. Mol. Biol. 2007;14:1049–1055. doi: 10.1038/nsmb1324. PubMed DOI
Fernández-Jiménez N., Pradillo M. The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. J. Exp. Bot. 2020;71:5148–5159. doi: 10.1093/jxb/eraa299. PubMed DOI
Pu W., Zhang H., Qin P., Deng L. Nuclear envelope integrity, DNA replication, damage repair and genome stability. Genome Instab. Dis. 2021;2:102–114. doi: 10.1007/s42764-021-00039-w. DOI
Rowat A.C., Jaalouk D.E., Zwerger M., Ung W.L., Eydelnant I.A., Olins D.E., Olins A.L., Herrmann H., Weitz D.A., Lammerding J. Nuclear Envelope Composition Determines the Ability of Neutrophil-type Cells to Passage through Micron-scale Constrictions. J. Biol. Chem. 2013;288:8610–8618. doi: 10.1074/jbc.M112.441535. PubMed DOI PMC
D’Angelo M.A., Gomez-Cavazos J.S., Mei A., Lackner D.H., Hetzer M.W. A Change in Nuclear Pore Complex Composition Regulates Cell Differentiation. Dev. Cell. 2012;22:446–458. doi: 10.1016/j.devcel.2011.11.021. PubMed DOI PMC
De Las Heras J.I., Meinke P., Batrakou D.G., Srsen V., Zuleger N., Kerr A.R., Schirmer E.C. Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus. 2013;4:460–477. doi: 10.4161/nucl.26872. PubMed DOI PMC
Watson M.L. The nuclear envelope: Its structure and relation to cytoplasmic membranes. J. Biophys. Biochem. Cytol. 1955;1:257. doi: 10.1083/jcb.1.3.257. PubMed DOI PMC
Dingwall C., Laskey R. The nuclear membrane. Science. 1992;258:942–947. doi: 10.1126/science.1439805. PubMed DOI
Fisher D.Z., Chaudhary N., Blobel G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc. Natl. Acad. Sci. USA. 1986;83:6450–6454. doi: 10.1073/pnas.83.17.6450. PubMed DOI PMC
Aebi U., Cohn J., Buhle L., Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;323:560–564. doi: 10.1038/323560a0. PubMed DOI
Butin-Israeli V., Adam S.A., Goldman A.E., Goldman R.D. Nuclear lamin functions and disease. Trends Genet. 2012;28:464–471. doi: 10.1016/j.tig.2012.06.001. PubMed DOI PMC
Rankin J., Ellard S. The laminopathies: A clinical review. Clin. Genet. 2006;70:261–274. doi: 10.1111/j.1399-0004.2006.00677.x. PubMed DOI
Vigouroux C., Bonne G. Madame Curie Bioscience Database. Landes Bioscience; Austin, TX, USA: 2013. Laminopathies: One gene, two proteins, five diseases.
Kind J., van Steensel B. Genome–nuclear lamina interactions and gene regulation. Curr. Opin. Cell Biol. 2010;22:320–325. doi: 10.1016/j.ceb.2010.04.002. PubMed DOI
Puckelwartz M.J., Depreux F.F., McNally E.M. Gene expression, chromosome position and lamin A/C mutations. Nucleus. 2011;2:162–167. doi: 10.4161/nucl.2.3.16003. PubMed DOI PMC
Constantinescu D., Gray H.L., Sammak P.J., Schatten G.P., Csoka A.B. Lamin A/C Expression Is a Marker of Mouse and Human Embryonic Stem Cell Differentiation. Stem Cells. 2006;24:177–185. doi: 10.1634/stemcells.2004-0159. PubMed DOI
Liu S., Pellman D. The coordination of nuclear envelope assembly and chromosome segregation in metazoans. Nucleus. 2020;11:35–52. doi: 10.1080/19491034.2020.1742064. PubMed DOI PMC
Kuga T., Nie H., Kazami T., Satoh M., Matsushita K., Nomura F., Maeshima K., Nakayama Y., Tomonaga T. Lamin B2 prevents chromosome instability by ensuring proper mitotic chromosome segregation. Oncogenesis. 2014;3:e94. doi: 10.1038/oncsis.2014.6. PubMed DOI PMC
Dittmer T.A., Misteli T. The lamin protein family. Genome Biol. 2011;12:222. doi: 10.1186/gb-2011-12-5-222. PubMed DOI PMC
Ciska M., De La Espina S.M.D. The intriguing plant nuclear lamina. Front. Plant Sci. 2014;5:166. doi: 10.3389/fpls.2014.00166. PubMed DOI PMC
Ciska M., Hikida R., Masuda K., De La Espina S.M.D. Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. J. Exp. Bot. 2019;70:2651–2664. doi: 10.1093/jxb/erz102. PubMed DOI PMC
Machiels B.M., Zorenc A.H., Endert J.M., Kuijpers H.J., van Eys G.J., Ramaekers F.C., Broers J.L. An Alternative Splicing Product of the Lamin A/C Gene Lacks Exon 10. J. Biol. Chem. 1996;271:9249–9253. doi: 10.1074/jbc.271.16.9249. PubMed DOI
Furukawa K., Inagaki H., Hotta Y. Identification and Cloning of an mRNA Coding for a Germ Cell-Specific A-Type Lamin in Mice. Exp. Cell Res. 1994;212:426–430. doi: 10.1006/excr.1994.1164. PubMed DOI
Koncicka M., Cervenka J., Jahn D., Sucha R., Vodicka P., Gad A., Alsheimer M., Susor A. Expression of lamin C2 in mammalian oocytes. PLoS ONE. 2020;15:e0229781. doi: 10.1371/journal.pone.0229781. PubMed DOI PMC
Furukawa K., Hotta Y. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J. 1993;12:97–106. doi: 10.1002/j.1460-2075.1993.tb05635.x. PubMed DOI PMC
Stick R. The gene structure ofXenopus nuclear lamin A: A model for the evolution of A-type from B-type lamins by exon shuffling. Chromosoma. 1992;101:566–574. doi: 10.1007/BF00660316. PubMed DOI
Kim Y., Zheng X., Zheng Y. Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. Cell Res. 2013;23:1420–1423. doi: 10.1038/cr.2013.118. PubMed DOI PMC
Dwyer N., Blobel G. A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei. J. Cell Biol. 1976;70:581–591. doi: 10.1083/jcb.70.3.581. PubMed DOI PMC
Riemer D., Dodemont H., Weber K. A nuclear lamin of the nematode Caenorhabditis elegans with unusual structural features; cDNA cloning and gene organization. Eur. J. Cell Biol. 1993;62:214–223. PubMed
Ben-Harush K., Wiesel N., Frenkiel-Krispin D., Moeller D., Soreq E., Aebi U., Herrmann H., Gruenbaum Y., Medalia O. The supramolecular organization of the C. elegans nuclear lamin filament. J. Mol. Biol. 2009;386:1392–1402. doi: 10.1016/j.jmb.2008.12.024. PubMed DOI
Goldberg M.W., Huttenlauch I., Hutchison C.J., Stick R. Filaments made from A- and B-type lamins differ in structure and organization. J. Cell Sci. 2008;121:215–225. doi: 10.1242/jcs.022020. PubMed DOI
Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–264. doi: 10.1038/nature21382. PubMed DOI PMC
Stuurman N., Heins S., Aebi U. Nuclear Lamins: Their Structure, Assembly, and Interactions. J. Struct. Biol. 1998;122:42–66. doi: 10.1006/jsbi.1998.3987. PubMed DOI
Kitten G.T., Nigg E. The CaaX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2. J. Cell Biol. 1991;113:13–23. doi: 10.1083/jcb.113.1.13. PubMed DOI PMC
Adam S.A., Sengupta K., Goldman R.D. Regulation of Nuclear Lamin Polymerization by Importin α. J. Biol. Chem. 2008;283:8462–8468. doi: 10.1074/jbc.M709572200. PubMed DOI PMC
Kimura M., Okumura N., Kose S., Takao T., Imamoto N. Identification of Cargo Proteins Specific for Importin-β with Importin-α Applying a Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based in vitro Transport System. J. Biol. Chem. 2013;288:24540–24549. doi: 10.1074/jbc.M113.489286. PubMed DOI PMC
Verstraeten V.L.R.M., Broers J.L.V., Ramaekers F.C.S., Steensel M.A.M.V. The nuclear envelope, a key structure in cellular integrity and gene expression. Curr. Med. Chem. 2007;14:1231–1248. doi: 10.2174/092986707780598032. PubMed DOI
AKaminski A., Fedorchak G.R., Lammerding J. The cellular mastermind (?)—Mechanotransduction and the nucleus. Prog. Mol. Biol. Transl. Sci. 2014;126:157–203. PubMed PMC
Jimenez-Escrig A., Gobernado I., Garcia-Villanueva M., Antonio Sanchez-Herranz B.S. Autosomal recessive Emery-Dreifuss muscular dystrophy caused by a novel mutation (R225Q) in the lamin A/C gene identified by exome sequencing. Muscle Nerve. 2011;45:605–610. doi: 10.1002/mus.22324. PubMed DOI
Sullivan T., Escalante-Alcalde D., Bhatt H., Anver M., Bhat N., Nagashima K., Stewart C.L., Burke B. Loss of A-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy. J. Cell Biol. 1999;147:913–920. doi: 10.1083/jcb.147.5.913. PubMed DOI PMC
Muchir A., Bonne G., van der Kooi A.J., van Meegen M., Baas F., Bolhuis P.A., de Visser M., Schwartz K. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B) Hum. Mol. Genet. 2000;9:1453–1459. doi: 10.1093/hmg/9.9.1453. PubMed DOI
Wu W., Muchir A., Shan J., Bonne G., Worman H.J. Mitogen-Activated Protein Kinase Inhibitors Improve Heart Function and Prevent Fibrosis in Cardiomyopathy Caused by Mutation in Lamin A/C Gene. Circulation. 2011;123:53–61. doi: 10.1161/CIRCULATIONAHA.110.970673. PubMed DOI PMC
Bione S., Maestrini E., Rivella S., Mancini M., Regis S., Romeo G., Toniolo D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genet. 1994;8:323–327. doi: 10.1038/ng1294-323. PubMed DOI
Bonne G., Di Barletta M.R., Varnous S., Bécane H.-M., Hammouda E.-H., Merlini L., Muntoni F., Greenberg C.R., Gary F., Urtizberea J.-A. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Gen. 1999;21:285–288. doi: 10.1038/6799. PubMed DOI
Agarwal A.K., Fryns J.-P., Auchus R.J., Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 2003;12:1995–2001. doi: 10.1093/hmg/ddg213. PubMed DOI
Sahebalzamani A., Aryani O. Mandibuloacral Dysplasia with Type A Lipodystrophy (MADA) in A 16 year-old Iranian Girl. SMU Med. J. 2016;3:13–20.
Navarro C.L., Cadinanos J., Sandre-Giovannoli A.D., Bernard R., Courrier S., Boccaccio I., Boyer A., Kleijer W.J., Wagner A., Giuliano F. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum. Mol. Genet. 2005;14:1503–1513. doi: 10.1093/hmg/ddi159. PubMed DOI
Moiseeva O., Lopes-Paciencia S., Huot G., Lessard F., Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging. 2016;8:366. doi: 10.18632/aging.100903. PubMed DOI PMC
Eriksson M., Brown W.T., Gordon L.B., Glynn M.W., Singer J., Scott L., Erdos M.R., Robbins C.M., Moses T.Y., Berglund P. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature. 2003;423:293–298. doi: 10.1038/nature01629. PubMed DOI PMC
Taylor M.R., Fain P.R., Sinagra G., Robinson M.L., Robertson A.D., Carniel E., Di Lenarda A., Bohlmeyer T.J., Ferguson D.A., Brodsky G.L. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol. 2003;41:771–780. doi: 10.1016/S0735-1097(02)02954-6. PubMed DOI
Banerjee A., Rathee V., Krishnaswamy R., Bhattacharjee P., Ray P., Sood A.K., Sengupta K. Viscoelastic Behavior of Human Lamin A Proteins in the Context of Dilated Cardiomyopathy. PLoS ONE. 2013;8:e83410. doi: 10.1371/journal.pone.0083410. PubMed DOI PMC
Tazir M., Azzedine H., Assami S., Sindou P., Nouioua S., Zemmouri R., Hamadouche T., Chaouch M., Feingold J., Vallat J.-M. Phenotypic variability in autosomal recessive axonal Charcot-Marie-Tooth disease due to the R298C mutation in lamin A/C. Brain. 2004;127:154–163. doi: 10.1093/brain/awh021. PubMed DOI
Cao H., Hegele R.A. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 2000;9:109–112. doi: 10.1093/hmg/9.1.109. PubMed DOI
Zhang Y., Zhang Y., Li J., Bai R., Wang J., Peng T., Chen L., Wang J., Liu Y., Tian T., et al. LMNB1-Related Adult-Onset Autosomal Dominant Leukodystrophy Presenting as Movement Disorder: A Case Report and Review of the Literature. Front. Neurosci. 2019;13:1030. doi: 10.3389/fnins.2019.01030. PubMed DOI PMC
Parry D.A., Martin C.-A., Greene P., Marsh J.A., Blyth M., Cox H., Donnelly D., Greenhalgh L., Greville-Heygate S., Harrison V. Heterozygous lamin B1 and lamin B2 variants cause primary microcephaly and define a novel laminopathy. Genet. Med. 2020;23:408–414. doi: 10.1038/s41436-020-00980-3. PubMed DOI PMC
Damiano J.A., Afawi Z., Bahlo M., Mauermann M., Misk A., Arsov T., Oliver K.L., Dahl H.-H.M., Shearer A.E., Smith R.J. Mutation of the nuclear lamin geneLMNB2in progressive myoclonus epilepsy with early ataxia. Hum. Mol. Genet. 2015;24:4483–4490. doi: 10.1093/hmg/ddv171. PubMed DOI PMC
Gao J., Li Y., Fu X., Luo X. A Chinese patient with acquired partial lipodystrophy caused by a novel mutation with LMNB2 gene. J. Pediatr. Endocrinol. Metab. 2012;25:375–377. doi: 10.1515/jpem-2012-0007. PubMed DOI
Röber R.A., Weber K., Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: A developmental study. Development. 1989;105:365–378. doi: 10.1242/dev.105.2.365. PubMed DOI
Stewart C., Burke B. Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell. 1987;51:383–392. doi: 10.1016/0092-8674(87)90634-9. PubMed DOI
Harborth J., Elbashir S.M., Bechert K., Tuschl T., Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 2001;114:4557–4565. doi: 10.1242/jcs.114.24.4557. PubMed DOI
Vergnes L., Peterfy M., Bergo M.O., Young S., Reue K. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl. Acad. Sci. USA. 2004;101:10428–10433. doi: 10.1073/pnas.0401424101. PubMed DOI PMC
Coffinier C., Chang S.Y., Nobumori C., Tu Y., Farber E.A., Toth J.I., Fong L.G., Young S.G. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc. Natl. Acad. Sci. USA. 2010;107:5076–5081. doi: 10.1073/pnas.0908790107. PubMed DOI PMC
Yang S.H., Chang S.Y., Yin L., Tu Y., Hu Y., Yoshinaga Y., de Jong P.J., Fong L.G., Young S.G. An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum. Mol. Genet. 2011;20:3537–3544. doi: 10.1093/hmg/ddr266. PubMed DOI PMC
Kim Y., Sharov A.A., McDole K., Cheng M., Hao H., Fan C.-M., Gaiano N., Ko M.S., Zheng Y. Mouse B-Type Lamins Are Required for Proper Organogenesis But Not by Embryonic Stem Cells. Science. 2011;334:1706–1710. doi: 10.1126/science.1211222. PubMed DOI PMC
Lourim D., Krohne G. Membrane-associated lamins in Xenopus egg extracts: Identification of two vesicle populations. J. Cell Biol. 1993;123:501–512. doi: 10.1083/jcb.123.3.501. PubMed DOI PMC
Benavente R., Krohne G., Franke W.W. Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis. Cell. 1985;41:177–190. doi: 10.1016/0092-8674(85)90072-8. PubMed DOI
Newport J.W., Wilson K.L., Dunphy W.G. A lamin-independent pathway for nuclear envelope assembly. J. Cell Biol. 1990;111:2247–2259. doi: 10.1083/jcb.111.6.2247. PubMed DOI PMC
Meier J., Campbell K., Ford C., Stick R., Hutchison C. The role of lamin LIII in nuclear assembly and DNA replication, in cell-free extracts of Xenopus eggs. J. Cell Sci. 1991;98:271–279. doi: 10.1242/jcs.98.3.271. PubMed DOI
Tsai M.-Y., Wang S., Heidinger J.M., Shumaker D.K., Adam S.A., Goldman R.D., Zheng Y. A Mitotic Lamin B Matrix Induced by RanGTP Required for Spindle Assembly. Science. 2006;311:1887–1893. doi: 10.1126/science.1122771. PubMed DOI
Pochukalina G.N., Ilicheva N.V., Podgornaya O.I., Voronin A.P. Nucleolus-like body of mouse oocytes contains lamin A and B and TRF2 but not actin and topo II. Mol. Cytogenet. 2016;9:50. doi: 10.1186/s13039-016-0259-3. PubMed DOI PMC
Schatten G., Maul G.G., Schatten H., Chaly N., Simerly C., Balczon R., Brown D.L. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins. Proc. Natl. Acad. Sci. USA. 1985;82:4727–4731. doi: 10.1073/pnas.82.14.4727. PubMed DOI PMC
Prather R.S., Sims M.M., Maul G.G., First N.L., Schatten G. Nuclear Lamin Antigens are Developmentally Regulated during Porcine and Bovine Embryogenesis1. Biol. Reprod. 1989;41:123–132. doi: 10.1095/biolreprod41.1.123. PubMed DOI
Hall V., Cooney M.A., Shanahan P., Tecirlioglu R.T., Ruddock N.T., French A.J. Nuclear lamin antigen and messenger RNA expression in bovine in vitro produced and nuclear transfer embryos. Mol. Reprod. Dev. 2005;72:471–482. doi: 10.1002/mrd.20381. PubMed DOI
Tunnah D., Sewry C.A., Vaux D., Schirmer E.C., Morris G.E. The apparent absence of lamin B1 and emerin in many tissue nuclei is due to epitope masking. J. Mol. Histol. 2005;36:337–344. doi: 10.1007/s10735-005-9004-7. PubMed DOI
Wang B., Pfeiffer M.J., Drexler H.C.A., Fuellen G., Boiani M. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells. J. Proteome Res. 2016;15:2407–2421. doi: 10.1021/acs.jproteome.5b01083. PubMed DOI
Israel S., Casser E., Drexler H.C., Fuellen G., Boiani M. A framework for TRIM21-mediated protein depletion in early mouse embryos: Recapitulation of Tead4 null phenotype over three days. BMC Genom. 2019;20:755. doi: 10.1186/s12864-019-6106-2. PubMed DOI PMC
Ogushi S., Fulka J., Miyano T. Germinal vesicle materials are requisite for male pronucleus formation but not for change in the activities of CDK1 and MAP kinase during maturation and fertilization of pig oocytes. Dev. Biol. 2005;286:287–298. doi: 10.1016/j.ydbio.2005.08.002. PubMed DOI
Houliston E., Guilly M., Courvalin J., Maro B. Expression of nuclear lamins during mouse preimplantation development. Development. 1988;102:271–278. doi: 10.1242/dev.102.2.271. PubMed DOI
Maul G.G., Schatten G., Jimenez S., Carrera A.E. Detection of nuclear lamin B epitopes in oocyte nuclei from mice, sea urchins, and clams using a human autoimmune serum. Dev. Biol. 1987;121:368–375. doi: 10.1016/0012-1606(87)90173-4. PubMed DOI
Prentice-Biensch J., Singh J., Alfoteisy B., Anzar M. A simple and high-throughput method to assess maturation status of bovine oocytes: Comparison of anti-lamin A/C-DAPI with an aceto-orcein staining technique. Theriogenology. 2012;78:1633–1638. doi: 10.1016/j.theriogenology.2012.07.013. PubMed DOI
Goldman R.D., Gruenbaum Y., Moir R.D., Shumaker D.K., Spann T.P. Nuclear lamins: Building blocks of nuclear architecture. Genes Dev. 2002;16:533–547. doi: 10.1101/gad.960502. PubMed DOI
Dechat T., Adam S.A., Taimen P., Shimi T., Goldman R.D. Nuclear Lamins. Cold Spring Harb. Perspect. Biol. 2010;2:a000547. doi: 10.1101/cshperspect.a000547. PubMed DOI PMC
Hennig W. Heterochromatin. Chromosoma. 1999;108:1–9. doi: 10.1007/s004120050346. PubMed DOI
Ferrai C., de Castro I.J., Lavitas L., Chotalia M., Pombo A. Gene Positioning. Cold Spring Harb. Perspect. Biol. 2010;2:a000588. doi: 10.1101/cshperspect.a000588. PubMed DOI PMC
Takizawa T., Meaburn K., Misteli T. The Meaning of Gene Positioning. Cell. 2008;135:9–13. doi: 10.1016/j.cell.2008.09.026. PubMed DOI PMC
Van Steensel B., Henikoff S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nat. Biotechnol. 2000;18:424–428. doi: 10.1038/74487. PubMed DOI
Barras F., Marinus M. The great GATC: DNA methylation in E. coli. Trends Genet. 1989;5:139–143. doi: 10.1016/0168-9525(89)90054-1. PubMed DOI
Meuleman W., Peric-Hupkes D., Kind J., Beaudry J.-B., Pagie L., Kellis M., Reinders M., Wessels L., van Steensel B. Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 2012;23:270–280. doi: 10.1101/gr.141028.112. PubMed DOI PMC
Kind J., Van Steensel B. Stochastic genome-nuclear lamina interactions. Nucleus. 2014;5:124–130. doi: 10.4161/nucl.28825. PubMed DOI PMC
Kind J., Pagie L., de Vries S.S., Nahidiazar L., Dey S.S., Bienko M., Zhan Y., Lajoie B., de Graaf C.A., Amendola M., et al. Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells. Cell. 2015;163:134–147. doi: 10.1016/j.cell.2015.08.040. PubMed DOI PMC
Sobecki M., Souaid C., Boulay J., Guerineau V., Noordermeer D., Crabbe L. MadID, a Versatile Approach to Map Protein-DNA Interactions, Highlights Telomere-Nuclear Envelope Contact Sites in Human Cells. Cell Rep. 2018;25:2891–2903.e5. doi: 10.1016/j.celrep.2018.11.027. PubMed DOI PMC
Koziol M.J., Bradshaw C.R., Allen G.E., Costa A., Frezza C., Gurdon J. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat. Struct. Mol. Biol. 2016;23:24–30. doi: 10.1038/nsmb.3145. PubMed DOI PMC
Liu J., Zhu Y., Luo G.-Z., Wang X., Yue Y., Wang X., Zong X., Chen K., Yin H., Fu Y., et al. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat. Commun. 2016;7:13052. doi: 10.1038/ncomms13052. PubMed DOI PMC
Wu T.P., Wang T., Seetin M.G., Lai Y., Zhu S., Lin K., Liu Y., Byrum S.D., Mackintosh S.G., Zhong M., et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature. 2016;532:329–333. doi: 10.1038/nature17640. PubMed DOI PMC
Kind J., Pagie L., Ortabozkoyun H., Boyle S., de Vries S.S., Janssen H., Amendola M., Nolen L.D., Bickmore W.A., van Steensel B. Single-Cell Dynamics of Genome-Nuclear Lamina Interactions. Cell. 2013;153:178–192. doi: 10.1016/j.cell.2013.02.028. PubMed DOI
Noordermeer D., Leleu M., Schorderet P., Joye E., Chabaud F., Duboule D. Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. eLife. 2014;3:e02557. doi: 10.7554/eLife.02557. PubMed DOI PMC
Vieux-Rochas M., Fabre P., Leleu M., Duboule D., Noordermeer D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl. Acad. Sci. USA. 2015;112:4672–4677. doi: 10.1073/pnas.1504783112. PubMed DOI PMC
Jachowicz J.W., Santenard A., Bender A., Muller J., Torres-Padilla M.-E. Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev. 2013;27:2427–2432. doi: 10.1101/gad.224550.113. PubMed DOI PMC
Borsos M., Perricone S.M., Schauer T., Pontabry J., de Luca K.L., de Vries S.S., Ruiz-Morales E.R., Torres-Padilla M.-E., Kind J. Genome–lamina interactions are established de novo in the early mouse embryo. Nature. 2019;569:729–733. doi: 10.1038/s41586-019-1233-0. PubMed DOI PMC
Ward W.S. Function of sperm chromatin structural elements in fertilization and development. Mol. Hum. Reprod. 2009;16:30–36. doi: 10.1093/molehr/gap080. PubMed DOI PMC
McLay D.W., Clarke H.J. Remodelling the paternal chromatin at fertilization in mammals. Reproduction. 2003;125:625. doi: 10.1530/rep.0.1250625. PubMed DOI PMC
Adenot P., Mercier Y., Renard J., Thompson E. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development. 1997;124:4615–4625. doi: 10.1242/dev.124.22.4615. PubMed DOI
Burton A., Torres-Padilla M.-E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:723–735. doi: 10.1038/nrm3885. PubMed DOI
Burton A., Torres-Padilla M.-E. Epigenetic reprogramming and development: A unique heterochromatin organization in the preimplantation mouse embryo. Brief. Funct. Genom. 2010;9:444–454. doi: 10.1093/bfgp/elq027. PubMed DOI PMC
Puschendorf M., Terranova R., Boutsma E., Mao X., Isono K., Brykczynska U., Kolb C., Otte A.P., Koseki H., Orkin S.H., et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 2008;40:411–420. doi: 10.1038/ng.99. PubMed DOI
Aguirre-Lavin T., Adenot P., Bonnet-Garnier A., Lehmann G., Fleurot R., Boulesteix C., Debey P., Beaujean N. 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev. Biol. 2012;12:30. doi: 10.1186/1471-213X-12-30. PubMed DOI PMC
Solovei I., Wang A.S., Thanisch K., Schmidt C.S., Krebs S., Zwerger M., Cohen T.V., Devys D., Foisner R., Peichl L., et al. LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation. Cell. 2013;152:584–598. doi: 10.1016/j.cell.2013.01.009. PubMed DOI
Harr J.C., Schmid C.D., Muñoz-Jiménez C., Romero-Bueno R., Kalck V., Gonzalez-Sandoval A., Hauer M.H., Padeken J., Askjaer P., Mattout A. Loss of an H3K9me anchor rescues laminopathy-linked changes in nuclear organization and muscle function in an Emery-Dreifuss muscular dystrophy model. Genes Dev. 2020;34:560–579. doi: 10.1101/gad.332213.119. PubMed DOI PMC
Cohen T.V., Gnocchi V.F., Cohen J.E., Phadke A., Liu H., Ellis J.A., Foisner R., Stewart C.L., Zammit P.S., Partridge T.A. Defective skeletal muscle growth in lamin A/C-deficient mice is rescued by loss of Lap2α. Hum. Mol. Genet. 2013;22:2852–2869. doi: 10.1093/hmg/ddt135. PubMed DOI PMC