Nuclear Lamins: Key Proteins for Embryonic Development

. 2022 Jan 27 ; 11 (2) : . [epub] 20220127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35205065

Grantová podpora
20-04465S Czech Science Foundation

Lamins are essential components of the nuclear envelope and have been studied for decades due to their involvement in several devastating human diseases, the laminopathies. Despite intensive research, the molecular basis behind the disease state remains mostly unclear with a number of conflicting results regarding the different cellular functions of nuclear lamins being published. The field of developmental biology is no exception. Across model organisms, the types of lamins present in early mammalian development have been contradictory over the years. Due to the long half-life of the lamin proteins, which is a maternal factor that gets carried over to the zygote after fertilization, investigators are posed with challenges to dive into the functional aspects and significance of lamins in development. Due to these technical limitations, the role of lamins in early mammalian embryos is virtually unexplored. This review aims in converging results that were obtained so far in addition to the complex functions that ceases if lamins are mutated.

Zobrazit více v PubMed

Jorgensen P., Edgington N.P., Schneider B.L., Rupeš I., Tyers M., Futcher B. The Size of the Nucleus Increases as Yeast Cells Grow. Mol. Biol. Cell. 2007;18:3523–3532. doi: 10.1091/mbc.e06-10-0973. PubMed DOI PMC

Gillooly J.F., Hein A., Damiani R. Nuclear DNA Content Varies with Cell Size across Human Cell Types. Cold Spring Harb. Perspect. Biol. 2015;7:a019091. doi: 10.1101/cshperspect.a019091. PubMed DOI PMC

Sexton T., Schober H., Fraser P., Gasser S. Gene regulation through nuclear organization. Nat. Struct. Mol. Biol. 2007;14:1049–1055. doi: 10.1038/nsmb1324. PubMed DOI

Fernández-Jiménez N., Pradillo M. The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. J. Exp. Bot. 2020;71:5148–5159. doi: 10.1093/jxb/eraa299. PubMed DOI

Pu W., Zhang H., Qin P., Deng L. Nuclear envelope integrity, DNA replication, damage repair and genome stability. Genome Instab. Dis. 2021;2:102–114. doi: 10.1007/s42764-021-00039-w. DOI

Rowat A.C., Jaalouk D.E., Zwerger M., Ung W.L., Eydelnant I.A., Olins D.E., Olins A.L., Herrmann H., Weitz D.A., Lammerding J. Nuclear Envelope Composition Determines the Ability of Neutrophil-type Cells to Passage through Micron-scale Constrictions. J. Biol. Chem. 2013;288:8610–8618. doi: 10.1074/jbc.M112.441535. PubMed DOI PMC

D’Angelo M.A., Gomez-Cavazos J.S., Mei A., Lackner D.H., Hetzer M.W. A Change in Nuclear Pore Complex Composition Regulates Cell Differentiation. Dev. Cell. 2012;22:446–458. doi: 10.1016/j.devcel.2011.11.021. PubMed DOI PMC

De Las Heras J.I., Meinke P., Batrakou D.G., Srsen V., Zuleger N., Kerr A.R., Schirmer E.C. Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus. 2013;4:460–477. doi: 10.4161/nucl.26872. PubMed DOI PMC

Watson M.L. The nuclear envelope: Its structure and relation to cytoplasmic membranes. J. Biophys. Biochem. Cytol. 1955;1:257. doi: 10.1083/jcb.1.3.257. PubMed DOI PMC

Dingwall C., Laskey R. The nuclear membrane. Science. 1992;258:942–947. doi: 10.1126/science.1439805. PubMed DOI

Fisher D.Z., Chaudhary N., Blobel G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc. Natl. Acad. Sci. USA. 1986;83:6450–6454. doi: 10.1073/pnas.83.17.6450. PubMed DOI PMC

Aebi U., Cohn J., Buhle L., Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986;323:560–564. doi: 10.1038/323560a0. PubMed DOI

Butin-Israeli V., Adam S.A., Goldman A.E., Goldman R.D. Nuclear lamin functions and disease. Trends Genet. 2012;28:464–471. doi: 10.1016/j.tig.2012.06.001. PubMed DOI PMC

Rankin J., Ellard S. The laminopathies: A clinical review. Clin. Genet. 2006;70:261–274. doi: 10.1111/j.1399-0004.2006.00677.x. PubMed DOI

Vigouroux C., Bonne G. Madame Curie Bioscience Database. Landes Bioscience; Austin, TX, USA: 2013. Laminopathies: One gene, two proteins, five diseases.

Kind J., van Steensel B. Genome–nuclear lamina interactions and gene regulation. Curr. Opin. Cell Biol. 2010;22:320–325. doi: 10.1016/j.ceb.2010.04.002. PubMed DOI

Puckelwartz M.J., Depreux F.F., McNally E.M. Gene expression, chromosome position and lamin A/C mutations. Nucleus. 2011;2:162–167. doi: 10.4161/nucl.2.3.16003. PubMed DOI PMC

Constantinescu D., Gray H.L., Sammak P.J., Schatten G.P., Csoka A.B. Lamin A/C Expression Is a Marker of Mouse and Human Embryonic Stem Cell Differentiation. Stem Cells. 2006;24:177–185. doi: 10.1634/stemcells.2004-0159. PubMed DOI

Liu S., Pellman D. The coordination of nuclear envelope assembly and chromosome segregation in metazoans. Nucleus. 2020;11:35–52. doi: 10.1080/19491034.2020.1742064. PubMed DOI PMC

Kuga T., Nie H., Kazami T., Satoh M., Matsushita K., Nomura F., Maeshima K., Nakayama Y., Tomonaga T. Lamin B2 prevents chromosome instability by ensuring proper mitotic chromosome segregation. Oncogenesis. 2014;3:e94. doi: 10.1038/oncsis.2014.6. PubMed DOI PMC

Dittmer T.A., Misteli T. The lamin protein family. Genome Biol. 2011;12:222. doi: 10.1186/gb-2011-12-5-222. PubMed DOI PMC

Ciska M., De La Espina S.M.D. The intriguing plant nuclear lamina. Front. Plant Sci. 2014;5:166. doi: 10.3389/fpls.2014.00166. PubMed DOI PMC

Ciska M., Hikida R., Masuda K., De La Espina S.M.D. Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. J. Exp. Bot. 2019;70:2651–2664. doi: 10.1093/jxb/erz102. PubMed DOI PMC

Machiels B.M., Zorenc A.H., Endert J.M., Kuijpers H.J., van Eys G.J., Ramaekers F.C., Broers J.L. An Alternative Splicing Product of the Lamin A/C Gene Lacks Exon 10. J. Biol. Chem. 1996;271:9249–9253. doi: 10.1074/jbc.271.16.9249. PubMed DOI

Furukawa K., Inagaki H., Hotta Y. Identification and Cloning of an mRNA Coding for a Germ Cell-Specific A-Type Lamin in Mice. Exp. Cell Res. 1994;212:426–430. doi: 10.1006/excr.1994.1164. PubMed DOI

Koncicka M., Cervenka J., Jahn D., Sucha R., Vodicka P., Gad A., Alsheimer M., Susor A. Expression of lamin C2 in mammalian oocytes. PLoS ONE. 2020;15:e0229781. doi: 10.1371/journal.pone.0229781. PubMed DOI PMC

Furukawa K., Hotta Y. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J. 1993;12:97–106. doi: 10.1002/j.1460-2075.1993.tb05635.x. PubMed DOI PMC

Stick R. The gene structure ofXenopus nuclear lamin A: A model for the evolution of A-type from B-type lamins by exon shuffling. Chromosoma. 1992;101:566–574. doi: 10.1007/BF00660316. PubMed DOI

Kim Y., Zheng X., Zheng Y. Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. Cell Res. 2013;23:1420–1423. doi: 10.1038/cr.2013.118. PubMed DOI PMC

Dwyer N., Blobel G. A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei. J. Cell Biol. 1976;70:581–591. doi: 10.1083/jcb.70.3.581. PubMed DOI PMC

Riemer D., Dodemont H., Weber K. A nuclear lamin of the nematode Caenorhabditis elegans with unusual structural features; cDNA cloning and gene organization. Eur. J. Cell Biol. 1993;62:214–223. PubMed

Ben-Harush K., Wiesel N., Frenkiel-Krispin D., Moeller D., Soreq E., Aebi U., Herrmann H., Gruenbaum Y., Medalia O. The supramolecular organization of the C. elegans nuclear lamin filament. J. Mol. Biol. 2009;386:1392–1402. doi: 10.1016/j.jmb.2008.12.024. PubMed DOI

Goldberg M.W., Huttenlauch I., Hutchison C.J., Stick R. Filaments made from A- and B-type lamins differ in structure and organization. J. Cell Sci. 2008;121:215–225. doi: 10.1242/jcs.022020. PubMed DOI

Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–264. doi: 10.1038/nature21382. PubMed DOI PMC

Stuurman N., Heins S., Aebi U. Nuclear Lamins: Their Structure, Assembly, and Interactions. J. Struct. Biol. 1998;122:42–66. doi: 10.1006/jsbi.1998.3987. PubMed DOI

Kitten G.T., Nigg E. The CaaX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2. J. Cell Biol. 1991;113:13–23. doi: 10.1083/jcb.113.1.13. PubMed DOI PMC

Adam S.A., Sengupta K., Goldman R.D. Regulation of Nuclear Lamin Polymerization by Importin α. J. Biol. Chem. 2008;283:8462–8468. doi: 10.1074/jbc.M709572200. PubMed DOI PMC

Kimura M., Okumura N., Kose S., Takao T., Imamoto N. Identification of Cargo Proteins Specific for Importin-β with Importin-α Applying a Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based in vitro Transport System. J. Biol. Chem. 2013;288:24540–24549. doi: 10.1074/jbc.M113.489286. PubMed DOI PMC

Verstraeten V.L.R.M., Broers J.L.V., Ramaekers F.C.S., Steensel M.A.M.V. The nuclear envelope, a key structure in cellular integrity and gene expression. Curr. Med. Chem. 2007;14:1231–1248. doi: 10.2174/092986707780598032. PubMed DOI

AKaminski A., Fedorchak G.R., Lammerding J. The cellular mastermind (?)—Mechanotransduction and the nucleus. Prog. Mol. Biol. Transl. Sci. 2014;126:157–203. PubMed PMC

Jimenez-Escrig A., Gobernado I., Garcia-Villanueva M., Antonio Sanchez-Herranz B.S. Autosomal recessive Emery-Dreifuss muscular dystrophy caused by a novel mutation (R225Q) in the lamin A/C gene identified by exome sequencing. Muscle Nerve. 2011;45:605–610. doi: 10.1002/mus.22324. PubMed DOI

Sullivan T., Escalante-Alcalde D., Bhatt H., Anver M., Bhat N., Nagashima K., Stewart C.L., Burke B. Loss of A-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy. J. Cell Biol. 1999;147:913–920. doi: 10.1083/jcb.147.5.913. PubMed DOI PMC

Muchir A., Bonne G., van der Kooi A.J., van Meegen M., Baas F., Bolhuis P.A., de Visser M., Schwartz K. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B) Hum. Mol. Genet. 2000;9:1453–1459. doi: 10.1093/hmg/9.9.1453. PubMed DOI

Wu W., Muchir A., Shan J., Bonne G., Worman H.J. Mitogen-Activated Protein Kinase Inhibitors Improve Heart Function and Prevent Fibrosis in Cardiomyopathy Caused by Mutation in Lamin A/C Gene. Circulation. 2011;123:53–61. doi: 10.1161/CIRCULATIONAHA.110.970673. PubMed DOI PMC

Bione S., Maestrini E., Rivella S., Mancini M., Regis S., Romeo G., Toniolo D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genet. 1994;8:323–327. doi: 10.1038/ng1294-323. PubMed DOI

Bonne G., Di Barletta M.R., Varnous S., Bécane H.-M., Hammouda E.-H., Merlini L., Muntoni F., Greenberg C.R., Gary F., Urtizberea J.-A. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Gen. 1999;21:285–288. doi: 10.1038/6799. PubMed DOI

Agarwal A.K., Fryns J.-P., Auchus R.J., Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 2003;12:1995–2001. doi: 10.1093/hmg/ddg213. PubMed DOI

Sahebalzamani A., Aryani O. Mandibuloacral Dysplasia with Type A Lipodystrophy (MADA) in A 16 year-old Iranian Girl. SMU Med. J. 2016;3:13–20.

Navarro C.L., Cadinanos J., Sandre-Giovannoli A.D., Bernard R., Courrier S., Boccaccio I., Boyer A., Kleijer W.J., Wagner A., Giuliano F. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum. Mol. Genet. 2005;14:1503–1513. doi: 10.1093/hmg/ddi159. PubMed DOI

Moiseeva O., Lopes-Paciencia S., Huot G., Lessard F., Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging. 2016;8:366. doi: 10.18632/aging.100903. PubMed DOI PMC

Eriksson M., Brown W.T., Gordon L.B., Glynn M.W., Singer J., Scott L., Erdos M.R., Robbins C.M., Moses T.Y., Berglund P. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature. 2003;423:293–298. doi: 10.1038/nature01629. PubMed DOI PMC

Taylor M.R., Fain P.R., Sinagra G., Robinson M.L., Robertson A.D., Carniel E., Di Lenarda A., Bohlmeyer T.J., Ferguson D.A., Brodsky G.L. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol. 2003;41:771–780. doi: 10.1016/S0735-1097(02)02954-6. PubMed DOI

Banerjee A., Rathee V., Krishnaswamy R., Bhattacharjee P., Ray P., Sood A.K., Sengupta K. Viscoelastic Behavior of Human Lamin A Proteins in the Context of Dilated Cardiomyopathy. PLoS ONE. 2013;8:e83410. doi: 10.1371/journal.pone.0083410. PubMed DOI PMC

Tazir M., Azzedine H., Assami S., Sindou P., Nouioua S., Zemmouri R., Hamadouche T., Chaouch M., Feingold J., Vallat J.-M. Phenotypic variability in autosomal recessive axonal Charcot-Marie-Tooth disease due to the R298C mutation in lamin A/C. Brain. 2004;127:154–163. doi: 10.1093/brain/awh021. PubMed DOI

Cao H., Hegele R.A. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 2000;9:109–112. doi: 10.1093/hmg/9.1.109. PubMed DOI

Zhang Y., Zhang Y., Li J., Bai R., Wang J., Peng T., Chen L., Wang J., Liu Y., Tian T., et al. LMNB1-Related Adult-Onset Autosomal Dominant Leukodystrophy Presenting as Movement Disorder: A Case Report and Review of the Literature. Front. Neurosci. 2019;13:1030. doi: 10.3389/fnins.2019.01030. PubMed DOI PMC

Parry D.A., Martin C.-A., Greene P., Marsh J.A., Blyth M., Cox H., Donnelly D., Greenhalgh L., Greville-Heygate S., Harrison V. Heterozygous lamin B1 and lamin B2 variants cause primary microcephaly and define a novel laminopathy. Genet. Med. 2020;23:408–414. doi: 10.1038/s41436-020-00980-3. PubMed DOI PMC

Damiano J.A., Afawi Z., Bahlo M., Mauermann M., Misk A., Arsov T., Oliver K.L., Dahl H.-H.M., Shearer A.E., Smith R.J. Mutation of the nuclear lamin geneLMNB2in progressive myoclonus epilepsy with early ataxia. Hum. Mol. Genet. 2015;24:4483–4490. doi: 10.1093/hmg/ddv171. PubMed DOI PMC

Gao J., Li Y., Fu X., Luo X. A Chinese patient with acquired partial lipodystrophy caused by a novel mutation with LMNB2 gene. J. Pediatr. Endocrinol. Metab. 2012;25:375–377. doi: 10.1515/jpem-2012-0007. PubMed DOI

Röber R.A., Weber K., Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: A developmental study. Development. 1989;105:365–378. doi: 10.1242/dev.105.2.365. PubMed DOI

Stewart C., Burke B. Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell. 1987;51:383–392. doi: 10.1016/0092-8674(87)90634-9. PubMed DOI

Harborth J., Elbashir S.M., Bechert K., Tuschl T., Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 2001;114:4557–4565. doi: 10.1242/jcs.114.24.4557. PubMed DOI

Vergnes L., Peterfy M., Bergo M.O., Young S., Reue K. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl. Acad. Sci. USA. 2004;101:10428–10433. doi: 10.1073/pnas.0401424101. PubMed DOI PMC

Coffinier C., Chang S.Y., Nobumori C., Tu Y., Farber E.A., Toth J.I., Fong L.G., Young S.G. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc. Natl. Acad. Sci. USA. 2010;107:5076–5081. doi: 10.1073/pnas.0908790107. PubMed DOI PMC

Yang S.H., Chang S.Y., Yin L., Tu Y., Hu Y., Yoshinaga Y., de Jong P.J., Fong L.G., Young S.G. An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum. Mol. Genet. 2011;20:3537–3544. doi: 10.1093/hmg/ddr266. PubMed DOI PMC

Kim Y., Sharov A.A., McDole K., Cheng M., Hao H., Fan C.-M., Gaiano N., Ko M.S., Zheng Y. Mouse B-Type Lamins Are Required for Proper Organogenesis But Not by Embryonic Stem Cells. Science. 2011;334:1706–1710. doi: 10.1126/science.1211222. PubMed DOI PMC

Lourim D., Krohne G. Membrane-associated lamins in Xenopus egg extracts: Identification of two vesicle populations. J. Cell Biol. 1993;123:501–512. doi: 10.1083/jcb.123.3.501. PubMed DOI PMC

Benavente R., Krohne G., Franke W.W. Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis. Cell. 1985;41:177–190. doi: 10.1016/0092-8674(85)90072-8. PubMed DOI

Newport J.W., Wilson K.L., Dunphy W.G. A lamin-independent pathway for nuclear envelope assembly. J. Cell Biol. 1990;111:2247–2259. doi: 10.1083/jcb.111.6.2247. PubMed DOI PMC

Meier J., Campbell K., Ford C., Stick R., Hutchison C. The role of lamin LIII in nuclear assembly and DNA replication, in cell-free extracts of Xenopus eggs. J. Cell Sci. 1991;98:271–279. doi: 10.1242/jcs.98.3.271. PubMed DOI

Tsai M.-Y., Wang S., Heidinger J.M., Shumaker D.K., Adam S.A., Goldman R.D., Zheng Y. A Mitotic Lamin B Matrix Induced by RanGTP Required for Spindle Assembly. Science. 2006;311:1887–1893. doi: 10.1126/science.1122771. PubMed DOI

Pochukalina G.N., Ilicheva N.V., Podgornaya O.I., Voronin A.P. Nucleolus-like body of mouse oocytes contains lamin A and B and TRF2 but not actin and topo II. Mol. Cytogenet. 2016;9:50. doi: 10.1186/s13039-016-0259-3. PubMed DOI PMC

Schatten G., Maul G.G., Schatten H., Chaly N., Simerly C., Balczon R., Brown D.L. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins. Proc. Natl. Acad. Sci. USA. 1985;82:4727–4731. doi: 10.1073/pnas.82.14.4727. PubMed DOI PMC

Prather R.S., Sims M.M., Maul G.G., First N.L., Schatten G. Nuclear Lamin Antigens are Developmentally Regulated during Porcine and Bovine Embryogenesis1. Biol. Reprod. 1989;41:123–132. doi: 10.1095/biolreprod41.1.123. PubMed DOI

Hall V., Cooney M.A., Shanahan P., Tecirlioglu R.T., Ruddock N.T., French A.J. Nuclear lamin antigen and messenger RNA expression in bovine in vitro produced and nuclear transfer embryos. Mol. Reprod. Dev. 2005;72:471–482. doi: 10.1002/mrd.20381. PubMed DOI

Tunnah D., Sewry C.A., Vaux D., Schirmer E.C., Morris G.E. The apparent absence of lamin B1 and emerin in many tissue nuclei is due to epitope masking. J. Mol. Histol. 2005;36:337–344. doi: 10.1007/s10735-005-9004-7. PubMed DOI

Wang B., Pfeiffer M.J., Drexler H.C.A., Fuellen G., Boiani M. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells. J. Proteome Res. 2016;15:2407–2421. doi: 10.1021/acs.jproteome.5b01083. PubMed DOI

Israel S., Casser E., Drexler H.C., Fuellen G., Boiani M. A framework for TRIM21-mediated protein depletion in early mouse embryos: Recapitulation of Tead4 null phenotype over three days. BMC Genom. 2019;20:755. doi: 10.1186/s12864-019-6106-2. PubMed DOI PMC

Ogushi S., Fulka J., Miyano T. Germinal vesicle materials are requisite for male pronucleus formation but not for change in the activities of CDK1 and MAP kinase during maturation and fertilization of pig oocytes. Dev. Biol. 2005;286:287–298. doi: 10.1016/j.ydbio.2005.08.002. PubMed DOI

Houliston E., Guilly M., Courvalin J., Maro B. Expression of nuclear lamins during mouse preimplantation development. Development. 1988;102:271–278. doi: 10.1242/dev.102.2.271. PubMed DOI

Maul G.G., Schatten G., Jimenez S., Carrera A.E. Detection of nuclear lamin B epitopes in oocyte nuclei from mice, sea urchins, and clams using a human autoimmune serum. Dev. Biol. 1987;121:368–375. doi: 10.1016/0012-1606(87)90173-4. PubMed DOI

Prentice-Biensch J., Singh J., Alfoteisy B., Anzar M. A simple and high-throughput method to assess maturation status of bovine oocytes: Comparison of anti-lamin A/C-DAPI with an aceto-orcein staining technique. Theriogenology. 2012;78:1633–1638. doi: 10.1016/j.theriogenology.2012.07.013. PubMed DOI

Goldman R.D., Gruenbaum Y., Moir R.D., Shumaker D.K., Spann T.P. Nuclear lamins: Building blocks of nuclear architecture. Genes Dev. 2002;16:533–547. doi: 10.1101/gad.960502. PubMed DOI

Dechat T., Adam S.A., Taimen P., Shimi T., Goldman R.D. Nuclear Lamins. Cold Spring Harb. Perspect. Biol. 2010;2:a000547. doi: 10.1101/cshperspect.a000547. PubMed DOI PMC

Hennig W. Heterochromatin. Chromosoma. 1999;108:1–9. doi: 10.1007/s004120050346. PubMed DOI

Ferrai C., de Castro I.J., Lavitas L., Chotalia M., Pombo A. Gene Positioning. Cold Spring Harb. Perspect. Biol. 2010;2:a000588. doi: 10.1101/cshperspect.a000588. PubMed DOI PMC

Takizawa T., Meaburn K., Misteli T. The Meaning of Gene Positioning. Cell. 2008;135:9–13. doi: 10.1016/j.cell.2008.09.026. PubMed DOI PMC

Van Steensel B., Henikoff S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nat. Biotechnol. 2000;18:424–428. doi: 10.1038/74487. PubMed DOI

Barras F., Marinus M. The great GATC: DNA methylation in E. coli. Trends Genet. 1989;5:139–143. doi: 10.1016/0168-9525(89)90054-1. PubMed DOI

Meuleman W., Peric-Hupkes D., Kind J., Beaudry J.-B., Pagie L., Kellis M., Reinders M., Wessels L., van Steensel B. Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 2012;23:270–280. doi: 10.1101/gr.141028.112. PubMed DOI PMC

Kind J., Van Steensel B. Stochastic genome-nuclear lamina interactions. Nucleus. 2014;5:124–130. doi: 10.4161/nucl.28825. PubMed DOI PMC

Kind J., Pagie L., de Vries S.S., Nahidiazar L., Dey S.S., Bienko M., Zhan Y., Lajoie B., de Graaf C.A., Amendola M., et al. Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells. Cell. 2015;163:134–147. doi: 10.1016/j.cell.2015.08.040. PubMed DOI PMC

Sobecki M., Souaid C., Boulay J., Guerineau V., Noordermeer D., Crabbe L. MadID, a Versatile Approach to Map Protein-DNA Interactions, Highlights Telomere-Nuclear Envelope Contact Sites in Human Cells. Cell Rep. 2018;25:2891–2903.e5. doi: 10.1016/j.celrep.2018.11.027. PubMed DOI PMC

Koziol M.J., Bradshaw C.R., Allen G.E., Costa A., Frezza C., Gurdon J. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat. Struct. Mol. Biol. 2016;23:24–30. doi: 10.1038/nsmb.3145. PubMed DOI PMC

Liu J., Zhu Y., Luo G.-Z., Wang X., Yue Y., Wang X., Zong X., Chen K., Yin H., Fu Y., et al. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat. Commun. 2016;7:13052. doi: 10.1038/ncomms13052. PubMed DOI PMC

Wu T.P., Wang T., Seetin M.G., Lai Y., Zhu S., Lin K., Liu Y., Byrum S.D., Mackintosh S.G., Zhong M., et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature. 2016;532:329–333. doi: 10.1038/nature17640. PubMed DOI PMC

Kind J., Pagie L., Ortabozkoyun H., Boyle S., de Vries S.S., Janssen H., Amendola M., Nolen L.D., Bickmore W.A., van Steensel B. Single-Cell Dynamics of Genome-Nuclear Lamina Interactions. Cell. 2013;153:178–192. doi: 10.1016/j.cell.2013.02.028. PubMed DOI

Noordermeer D., Leleu M., Schorderet P., Joye E., Chabaud F., Duboule D. Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci. eLife. 2014;3:e02557. doi: 10.7554/eLife.02557. PubMed DOI PMC

Vieux-Rochas M., Fabre P., Leleu M., Duboule D., Noordermeer D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl. Acad. Sci. USA. 2015;112:4672–4677. doi: 10.1073/pnas.1504783112. PubMed DOI PMC

Jachowicz J.W., Santenard A., Bender A., Muller J., Torres-Padilla M.-E. Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev. 2013;27:2427–2432. doi: 10.1101/gad.224550.113. PubMed DOI PMC

Borsos M., Perricone S.M., Schauer T., Pontabry J., de Luca K.L., de Vries S.S., Ruiz-Morales E.R., Torres-Padilla M.-E., Kind J. Genome–lamina interactions are established de novo in the early mouse embryo. Nature. 2019;569:729–733. doi: 10.1038/s41586-019-1233-0. PubMed DOI PMC

Ward W.S. Function of sperm chromatin structural elements in fertilization and development. Mol. Hum. Reprod. 2009;16:30–36. doi: 10.1093/molehr/gap080. PubMed DOI PMC

McLay D.W., Clarke H.J. Remodelling the paternal chromatin at fertilization in mammals. Reproduction. 2003;125:625. doi: 10.1530/rep.0.1250625. PubMed DOI PMC

Adenot P., Mercier Y., Renard J., Thompson E. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development. 1997;124:4615–4625. doi: 10.1242/dev.124.22.4615. PubMed DOI

Burton A., Torres-Padilla M.-E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:723–735. doi: 10.1038/nrm3885. PubMed DOI

Burton A., Torres-Padilla M.-E. Epigenetic reprogramming and development: A unique heterochromatin organization in the preimplantation mouse embryo. Brief. Funct. Genom. 2010;9:444–454. doi: 10.1093/bfgp/elq027. PubMed DOI PMC

Puschendorf M., Terranova R., Boutsma E., Mao X., Isono K., Brykczynska U., Kolb C., Otte A.P., Koseki H., Orkin S.H., et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 2008;40:411–420. doi: 10.1038/ng.99. PubMed DOI

Aguirre-Lavin T., Adenot P., Bonnet-Garnier A., Lehmann G., Fleurot R., Boulesteix C., Debey P., Beaujean N. 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev. Biol. 2012;12:30. doi: 10.1186/1471-213X-12-30. PubMed DOI PMC

Solovei I., Wang A.S., Thanisch K., Schmidt C.S., Krebs S., Zwerger M., Cohen T.V., Devys D., Foisner R., Peichl L., et al. LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation. Cell. 2013;152:584–598. doi: 10.1016/j.cell.2013.01.009. PubMed DOI

Harr J.C., Schmid C.D., Muñoz-Jiménez C., Romero-Bueno R., Kalck V., Gonzalez-Sandoval A., Hauer M.H., Padeken J., Askjaer P., Mattout A. Loss of an H3K9me anchor rescues laminopathy-linked changes in nuclear organization and muscle function in an Emery-Dreifuss muscular dystrophy model. Genes Dev. 2020;34:560–579. doi: 10.1101/gad.332213.119. PubMed DOI PMC

Cohen T.V., Gnocchi V.F., Cohen J.E., Phadke A., Liu H., Ellis J.A., Foisner R., Stewart C.L., Zammit P.S., Partridge T.A. Defective skeletal muscle growth in lamin A/C-deficient mice is rescued by loss of Lap2α. Hum. Mol. Genet. 2013;22:2852–2869. doi: 10.1093/hmg/ddt135. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...