The Short-Term Antibacterial Activity of Three Selected Endodontic Sealers against Enterococcus faecalis Bacterial Culture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2021_025
Palacký University, Olomouc
PubMed
35207445
PubMed Central
PMC8879048
DOI
10.3390/life12020158
PII: life12020158
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, antimicrobial, calcium silicate, endodontic, poly-epoxy resin, sealer, zinc oxide-eugenol,
- Publikační typ
- časopisecké články MeSH
(1) Background: Microorganisms originating from the microflora of the oral cavity are the main cause of the inflammatory diseases of the dental pulp and periapical periodontium, as well as the failure of endodontic treatment. The subsequent root canal treatment is not able to remove all the pathogens, and a small number of viable bacteria remain in the dentine tubules, which must be sealed by endodontic sealers. These sealers should have at least a bacteriostatic effect to prevent the remaining bacteria from reproducing. The aim of this study is to compare the short-term antibacterial activity of three endodontic sealers based on poly-epoxy resin, zinc oxide-eugenol and calcium silicate with a calcium hydroxide-based sealer. Calcium hydroxide is used as temporary intracanal medicament and, thus, should show significant antibacterial activity. (2) Methods: A total of 25 bovine dentine samples infected with Enterococcus faecalis were used in this study. After the sealer placement and a 24 h incubation period, the root canal walls were scraped, and the suspension of dentine fillings was used for a semi-quantitative evaluation of microbial growth. (3) Results: The poly-epoxide resin-based sealer ADSeal™ showed significant antibacterial properties. (4) Conclusions: The highest antibacterial activity was shown in poly-epoxide resin-based sealer group, followed by the zinc oxide-eugenol-based sealer and calcium silicate-based sealer.
Zobrazit více v PubMed
Bergenholtz G. Micro organisms from necrotic pulp of traumatized teeth. Odont. Revy. 1974;25:347–358. PubMed
Rôças I.N., Siqueira J.F. Characterization of microbiota of root canal-treated teeth with posttreatment disease. J. Clin. Microbiol. 2012;50:1721–1724. doi: 10.1128/JCM.00531-12. PubMed DOI PMC
Tabassum S., Khan F.R. Failure of endodontic treatment: The usual suspects. Eur. J. Dent. 2016;10:144–147. doi: 10.4103/1305-7456.175682. PubMed DOI PMC
Gomes B.P.F.A., Pinheiro E.T., Gadê-Neto C.R., Sousa E.L.R., Ferraz C.C.R., Zaia A.A., Teixeira F.B., Souza-Filho F.J. Microbiological examination of infected dental root canals. Oral Microbiol. Immunol. 2004;19:71–76. doi: 10.1046/j.0902-0055.2003.00116.x. PubMed DOI
Sakko M., Tjäderhane L., Rautemaa-Richardson R. Microbiology of Root Canal Infections. Prim. Dent. J. 2016;5:84–89. doi: 10.1308/205016816819304231. PubMed DOI
Waltimo T., Trope M., Haapasalo M., Ørstavik D. Clinical efficacy of treatment procedures in endodontic infection control and one year follow-up of periapical healing. J. Endod. 2005;31:863–866. doi: 10.1097/01.don.0000164856.27920.85. PubMed DOI
Torabinejad M., Fouad A.F., Walton R.E. Endodontics: Principles and Practice. 5th ed. Elsevier Saunders; St. Louis, MO, USA: 2014. pp. 278, 322–323.
Iandolo A., Amato M., Dagna A., Poggio C., Abdellatif D., Franco V., Pantaleo G. Intracanal heating of sodium hypochlorite: Scanning electron microscope evaluation of root canal walls. J. Conserv. Dent. 2018;21:569–573. doi: 10.4103/JCD.JCD_245_18. PubMed DOI PMC
Mohmmed S.A., Vianna M.E., Penny M.R., Hilton S.T., Mordan N.J., Knowles J.C. Investigations into in situ Enterococcus faecalis biofilm removal by passive and active sodium hypochlorite irrigation delivered into the lateral canal of a simulated root canal model. Int. Endod. J. 2018;51:649–662. doi: 10.1111/iej.12880. PubMed DOI
Konstantinidi E., Psimma Z., Chávez de Paz L.E., Boutsioukis C. Apical negative pressure irrigation versus syringe irrigation: A systematic review of cleaning and disinfection of the root canal system. Int. Endod. J. 2017;50:1034–1054. doi: 10.1111/iej.12725. PubMed DOI
Fabricius L., Dahlén G., Sundqvist G., Happonen R.P., Möller A.J.R. Influence of residual bacteria on periapical tissue healing after chemomechanical treatment and root filling of experimentally infected monkey teeth. Eur. J. Oral Sci. 2006;114:278–285. doi: 10.1111/j.1600-0722.2006.00380.x. PubMed DOI
Özcan E., Eldeniz A.U., Ari H. Bacterial killing by several root filling materials and methods in an ex vivo infected root canal model. Int. Endod. J. 2011;44:1102–1109. doi: 10.1111/j.1365-2591.2011.01928.x. PubMed DOI
Wu M.K., Dummer P.M.H., Wesselink P.R. Consequences of and strategies to deal with residual post-treatment root canal infection. Int. Endod. J. 2006;39:343–356. doi: 10.1111/j.1365-2591.2006.01092.x. PubMed DOI
Saleh I.M., Ruyter I.E., Haapasalo M., Ørstavik D. Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro. Int. Endod. J. 2004;37:193–198. doi: 10.1111/j.0143-2885.2004.00785.x. PubMed DOI
Lee J.K., Kwak S.W., Ha J.H., Lee W.C., Kim H.C. Physicochemical Properties of Epoxy Resin-Based and Bioceramic-Based Root Canal Sealers. Bioinorg. Chem. Appl. 2017;2017:2582849. doi: 10.1155/2017/2582849. PubMed DOI PMC
Arnaldo C. Endodontics. Volume II. Edizioni Odontoiatriche Il Tridente; Florence, Italy: 2005. p. 610.
Li G.H., Niu L.N., Zhang W., Olsen M., De-Deus G., Eid A.A., Chen J.H., Pashley D.H., Tay F.R. Ability of new obturation materials to improve the seal of the root canal system: A review. Acta Biomater. 2014;10:1050–1063. doi: 10.1016/j.actbio.2013.11.015. PubMed DOI PMC
Mohammadi Z., Shalavi S., Yazdizadeh M. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review. Chonnam Med. J. 2012;48:133–140. doi: 10.4068/cmj.2012.48.3.133. PubMed DOI PMC
Evans M., Davies J.K., Sundqvist G., Figdor D. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int. Endod. J. 2002;35:321–328. doi: 10.1046/j.1365-2591.2002.00504.x. PubMed DOI
Hoshino R.A., da Silva G.F., Delfino M.M., Guerreiro-Tanomaru J.M., Tanomaru-Filho M., Sasso-Cerri E., Filho I.B., Cerri P.S. Physical Properties, Antimicrobial Activity and In Vivo Tissue Response to Apexit Plus. Materials. 2020;13:1171. doi: 10.3390/ma13051171. PubMed DOI PMC
Hargreaves K.M., Berman L.H. Cohen’s Pathways of the Pulp. 11th ed. Mosby Elsevier; St. Louis, MO, USA: 2016. p. 199.
Swimberghe R.C.D., Coenye T., De Moor R.J.G., Meire M.A. Biofilm model systems for root canal disinfection: A literature review. Int. Endod. J. 2019;52:604–628. doi: 10.1111/iej.13050. PubMed DOI
Camargo C.H.R., Siviero M., Camargo S.E.A., de Oliveira S.H.G., Carvalho C.A.T., Valera M.C. Topographical, Diametral, and Quantitative Analysis of Dentin Tubules in the Root Canals of Human and Bovine Teeth. J. Endod. 2007;33:422–426. doi: 10.1016/j.joen.2006.12.011. PubMed DOI
Schilke R., Lisson J.A., Bauß O., Geurtsen W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch. Oral Biol. 2000;45:355–361. doi: 10.1016/S0003-9969(00)00006-6. PubMed DOI
Alsubait S., Albader S., Alajlan N., Alkhunaini N., Niazy A., Almahdy A. Comparison of the antibacterial activity of calcium silicate- and epoxy resin-based endodontic sealers against Enterococcus faecalis biofilms: A confocal laser-scanning microscopy analysis. Odontology. 2019;107:513–520. doi: 10.1007/s10266-019-00425-7. PubMed DOI
Heling I., Chandler N.P. The antimicrobial effect within dentinal tubules of four root canal sealers. J. Endod. 1996;22:257–259. doi: 10.1016/S0099-2399(06)80144-5. PubMed DOI
Siboni F., Taddei P., Zamparini F., Prati C., Gandolfi M.G. Properties of bioroot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int. Endod. J. 2017;50:120–136. doi: 10.1111/iej.12856. PubMed DOI
Marín-Bauza G.A., Silva-Sousa Y.T.C., da Cunha S.A., Rached F.J.A., Bonetti-Filho I., Sousa-Neto M.D., Miranda C.E.S. Physicochemical properties of endodontic sealers of different bases. J. Appl. Oral Sci. 2012;20:455–461. doi: 10.1590/S1678-77572012000400011. PubMed DOI PMC
Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 2007;40:462–470. doi: 10.1111/j.1365-2591.2007.01248.x. PubMed DOI
Zancan R.F., Vivan R.R., Milanda Lopes M.R., Weckwerth P.H., de Andrade F.B., Ponce J.B., Duarte M.A.H. Antimicrobial Activity and Physicochemical Properties of Calcium Hydroxide Pastes Used as Intracanal Medication. J. Endod. 2016;42:1822–1828. doi: 10.1016/j.joen.2016.08.017. PubMed DOI
Zancan R.F., Calefi P.H.S., Borges M.M.B., Lopes M.R.M., de Andrade F.B., Vivan R.R., Duarte M.A.H. Antimicrobial activity of intracanal medications against both Enterococcus faecalis and Candida albicans biofilm. Microsc. Res. Tech. 2019;82:494–500. doi: 10.1002/jemt.23192. PubMed DOI
Colombo M., Poggio C., Dagna A., Meravini M.V., Riva P., Trovati F., Pietrocola G. Biological and physico-chemical properties of new root canal sealers. J. Clin. Exp. Dent. 2018;10:120–126. doi: 10.4317/jced.54548. PubMed DOI PMC
Bukhari S., Karabucak B. The Antimicrobial Effect of Bioceramic Sealer on an 8-week Matured Enterococcus faecalis Biofilm Attached to Root Canal Dentinal Surface. J. Endod. 2019;45:1047–1052. doi: 10.1016/j.joen.2019.04.004. PubMed DOI
Shin J.H., Lee D.Y., Lee S.H. Comparison of antimicrobial activity of traditional and new developed root sealers against pathogens related root canal. J. Dent. Sci. 2018;13:54–59. doi: 10.1016/j.jds.2017.10.007. PubMed DOI PMC
Kahn F.H., Rosenberg P.A., Schertzer L., Korthals G., Nguyen P.N.T. An in-vitro evaluation of sealer placement methods. Int. Endod. J. 1997;30:181–186. doi: 10.1111/j.1365-2591.1997.tb00694.x. PubMed DOI
Haapasalo H.K., Sirén E.K., Waltimo T.M.T., Ørstavik D., Haapasalo M.P.P. Inactivation of local root canal medicaments by dentine: An in vitro study. Int. Endod. J. 2000;33:126–131. doi: 10.1046/j.1365-2591.2000.00291.x. PubMed DOI
Da Silva E.J.N.L., Santos C.C., Zaia A.A. Long-term cytotoxic effects of contemporary root canalsealers. J. Appl. Oral Sci. 2013;21:43–47. doi: 10.1590/1678-7757201302304. PubMed DOI PMC
Marchese A., Barbieri R., Coppo E., Orhan I.E., Daglia M., Nabavi S.F., Izadi M., Abdollahi M., Nabavi S.M., Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017;43:668–689. doi: 10.1080/1040841X.2017.1295225. PubMed DOI
Huang F.M., Tai K.W., Chou M.Y., Chang Y.C. Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int. Endod. J. 2002;35:153–158. doi: 10.1046/j.1365-2591.2002.00459.x. PubMed DOI
Marchese A., Orhan I.E., Daglia M., Barbieri R., Di Lorenzo A., Nabavi S.F., Gortzi O., Izadi M., Nabavi S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402–414. doi: 10.1016/j.foodchem.2016.04.111. PubMed DOI
Patni P.M., Chandak M., Jain P., Patni M.J., Jain S., Mishra P., Jain V. Stereomicroscopic evaluation of sealing ability of four different root canal sealers—An invitro study. J. Clin. Diagnostic Res. 2016;10:37–39. doi: 10.7860/JCDR/2016/19477.8246. PubMed DOI PMC
Jagtap P., Shetty R., Agarwalla A., Wani P., Bhargava K., Martande S. Comparative evaluation of cytotoxicity of root canal sealers on cultured human periodontal fibroblasts: In vitro study. J. Contemp. Dent. Pract. 2018;19:847–852. PubMed
Ioannidis K., Beltes P., Lambrianidis T., Kapagiannidis D., Karagiannis V. Crown discoloration induced by endodontic sealers: Spectrophotometric measurement of Commission International de I’Eclairage’s L*, a*, b* chromatic parameters. Oper. Dent. 2013;38:E91–E102. doi: 10.2341/11-266-L. PubMed DOI
Prestegaard H., Portenier I., Ørstavik D., Kayaoglu G., Haapasalo M., Endal U. Antibacterial activity of various root canal sealers and root-end filling materials in dentin blocks infected ex vivo with Enterococcus faecalis. Acta Odontol. Scand. 2014;72:970–976. doi: 10.3109/00016357.2014.931462. PubMed DOI
Heyder M., Kranz S., Völpel A., Pfister W., Watts D.C., Jandt K.D., Sigusch B.W. Antibacterial effect of different root canal sealers on three bacterial species. Dent. Mater. 2013;29:542–549. doi: 10.1016/j.dental.2013.02.007. PubMed DOI
Kayaoglu G., Erten H., Alaçam T., Ørstavik D. Short-term antibacterial activity of root canal sealers towards Enterococcus faecalis. Int. Endod. J. 2005;38:483–488. doi: 10.1111/j.1365-2591.2005.00981.x. PubMed DOI
Zhou H.M., Shen Y., Zheng W., Li L., Zheng Y.F., Haapasalo M. Physical properties of 5 root canal sealers. J. Endod. 2013;39:1281–1286. doi: 10.1016/j.joen.2013.06.012. PubMed DOI
Komabayashi T., Colmenar D., Cvach N., Bhat A., Primus C., Imai Y. Comprehensive review of current endodontic sealers. Dent. Mater. J. 2020;39:703–720. doi: 10.4012/dmj.2019-288. PubMed DOI
Heil J., Reifferscheid G., Waldmann P., Leyhausen G., Geurtsen W. Genotoxicity of dental materials. Mutat. Res. 1996;368:181–194. doi: 10.1016/S0165-1218(96)90060-9. PubMed DOI
Slutzky-Goldberg I., Slutzky H., Solomonov M., Moshonov J., Weiss E.I., Matalon S. Antibacterial properties of four endodontic sealers. J. Endod. 2008;34:735–738. doi: 10.1016/j.joen.2008.03.012. PubMed DOI
Zhang H., Shen Y., Ruse N.D., Haapasalo M. Antibacterial Activity of Endodontic Sealers by Modified Direct Contact Test Against Enterococcus faecalis. J. Endod. 2009;35:1051–1055. doi: 10.1016/j.joen.2009.04.022. PubMed DOI
Song Y.-S., Choi Y., Lim M.-J., Yu M.-K., Hong C.-U., Lee K.-W., Min K.S. In vitro evaluation of a newly produced resin-based endodontic sealer. Restor. Dent. Endod. 2016;41:189–195. doi: 10.5395/rde.2016.41.3.189. PubMed DOI PMC
Leonardo M.R., Da Silva L.A.B., Filho M.T., Silva R.S. Da Release of formaldehyde by 4 endodontic sealers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999;88:221–225. doi: 10.1016/S1079-2104(99)70119-8. PubMed DOI