Genome-wide analysis of sucrose synthase family in soybean and their expression in response to abiotic stress and seed development
Status retracted Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Retracted Publication
PubMed
35213642
PubMed Central
PMC8880960
DOI
10.1371/journal.pone.0264269
PII: PONE-D-21-36899
Knihovny.cz E-resources
- MeSH
- Genome-Wide Association Study MeSH
- Stress, Physiological * MeSH
- Glucosyltransferases * biosynthesis genetics MeSH
- Glycine max * enzymology genetics MeSH
- Soybean Proteins * biosynthesis genetics MeSH
- Gene Expression Regulation, Enzymologic * MeSH
- Gene Expression Regulation, Plant * MeSH
- Seeds * enzymology genetics MeSH
- Publication type
- Journal Article MeSH
- Retracted Publication MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glucosyltransferases * MeSH
- Soybean Proteins * MeSH
- sucrose synthase MeSH Browser
The sucrose synthase (SS) is an important enzyme family which play a vital role in sugar metabolism to improve the fruit quality of the plants. In many plant species, the members of SS family have been investigated but the detailed information is not available in legumes particularly and Glycine max specifically. In the present study, we found thirteen SS members (GmSS1-GmSS13) in G. max genome. High conserved regions were present in the GmSS sequences that may due to the selection pressure during evolutionary events. The segmental duplication was the major factor to increase the number of GmSS family members. The identified thirteen GmSS genes were divided into Class I, Class II and Class III with variable numbers of genes in each class. The protein interaction of GmSS gave the co-expression of sucrose synthase with glucose-1-phosphate adenylyltransferase while SLAC and REL test found number of positive sites in the coding sequences of SS family members. All the GmSS family members except GmSS7 and few of class III members, were highly expressed in all the soybean tissues. The expression of the class I members decreased during seed development, whireas, the class II members expression increased during the seed developing, may involve in sugar metabolism during seed development. Solexa sequencing libraries of acidic condition (pH 4.2) stress samples showed that the expression of class I GmSS genes increased 1- to 2-folds in treated samples than control. The differential expression pattern was observed between the members of a paralogous. This study provides detailed genome-wide analysis of GmSS family in soybean that will provide new insights for future evolutionary and soybean breeding to improve the plant growth and development.
Department of Biochemistry Shaheed Benazir Bhutto Women University Peshawar Pakistan
Department of Biotechnology University of Science and Technology Bannu Pakistan
Department of Botany and Microbiology College of Science King Saud University Riyadh Saudi Arabia
Department of Plant Breeding and Genetics Gomal University D 1 Khan Pakistan
Department of Plant Breeding and Genetics University of Agriculture D 1 Khan Pakistan
Department of Statistics Shaheed Benazir Bhutto Women University Peshawar Pakistan
See more in PubMed
Schmalstig JG, Hitz WD. Contributions of sucrose synthase and invertase to the metabolism of sucrose in developing leaves: estimation by alternate substrate utilization. Plant Physiology. 1987;85(2):407–12. doi: 10.1104/pp.85.2.407 PubMed DOI PMC
Geigenberger P, Stitt M. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta. 1993;189(3):329–39. doi: 10.1007/BF00194429 PubMed DOI
Kleczkowski LA, Kunz S, Wilczynska M. Mechanisms of UDP-glucose synthesis in plants. Crit Rev Plant Sci. 2010;29(4):191–203.
Albrecht G, Mustroph A. Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta. 2003;217(2):252–60. doi: 10.1007/s00425-003-0995-6 PubMed DOI
Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant and Cell Physiology. 2010;51(2):294–301. doi: 10.1093/pcp/pcp190 PubMed DOI
Nolte KD, Hendrix DL, Radin JW, Koch KE. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiology. 1995;109(4):1285–93. doi: 10.1104/pp.109.4.1285 PubMed DOI PMC
Barratt DP, Barber L, Kruger NJ, Smith AM, Wang TL, Martin C. Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiology. 2001;127(2):655–64. PubMed PMC
Fu H, Park WD. Sink-and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. The Plant Cell. 1995;7(9):1369–85. doi: 10.1105/tpc.7.9.1369 PubMed DOI PMC
Tang G-Q, Lüscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. The Plant Cell. 1999;11(2):177–89. doi: 10.1105/tpc.11.2.177 PubMed DOI PMC
Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). The Plant Journal. 1995;7(1):97–107. doi: 10.1046/j.1365-313x.1995.07010097.x PubMed DOI
Klotz KL, Finger FL, Shelver WL. Characterization of two sucrose synthase isoforms in sugarbeet root. Plant Physiol Biochem. 2003;41(2):107–15.
Sun J, Loboda T, Sung S-JS, Black CC Jr. Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiology. 1992;98(3):1163–9. doi: 10.1104/pp.98.3.1163 PubMed DOI PMC
Bieniawska Z, Paul Barratt D, Garlick AP, Thole V, Kruger NJ, Martin C, et al.. Analysis of the sucrose synthase gene family in Arabidopsis. The Plant Journal. 2007;49(5):810–28. doi: 10.1111/j.1365-313X.2006.03011.x PubMed DOI
Harada T, Satoh S, Yoshioka T, Ishizawa K. Expression of sucrose synthase genes involved in enhanced elongation of pondweed (Potamogeton distinctus) turions under anoxia. Ann Bot. 2005;96(4):683–92. doi: 10.1093/aob/mci220 PubMed DOI PMC
Baier MC, Keck M, Goݶdde V, Niehaus K, Kuݶster H, Hohnjec N. Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiology. 2010;152(2):1000–14. doi: 10.1104/pp.109.149898 PubMed DOI PMC
Hohnjec N, Perlick AM, Pühler A, Küster H. The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant-Microbe Interact. 2003;16(10):903–15. doi: 10.1094/MPMI.2003.16.10.903 PubMed DOI
Carlson SJ, Chourey PS, Helentjaris T, Datta R. Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene. Plant Mol Biol. 2002;49(1):15–29. doi: 10.1023/a:1014457901992 PubMed DOI
Chourey P, Taliercio E, Carlson S, Ruan Y-L. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Molecular and General Genetics MGG. 1998;259(1):88–96. doi: 10.1007/s004380050792 PubMed DOI
Liu J, Li Y, Wang W, Gai J, Li Y. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genomics. 2016;17(1):1–15. PubMed PMC
Chandran D, Sharopova N, VandenBosch KA, Garvin DF, Samac DA. Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biology. 2008;8(1):1–17. doi: 10.1186/1471-2229-8-89 PubMed DOI PMC
Ahmed IM, Nadira UA, Cao F, He X, Zhang G, Wu F. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta. 2016;243(4):973–85. doi: 10.1007/s00425-015-2442-x PubMed DOI
Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, et al.. TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiology. 2007;144(2):806–20. doi: 10.1104/pp.107.097063 PubMed DOI PMC
Huang J-W, Chen J-T, Yu W-P, Shyur L-F, Wang A-Y, Sung H-Y, et al.. Complete structures of three rice sucrose synthase isogenes and differential regulation of their expressions. Biosci, Biotechnol, Biochem. 1996;60(2):233–9. doi: 10.1271/bbb.60.233 PubMed DOI
Wang A-Y, Kao M-H, Yang W-H, Sayion Y, Liu L-F, Lee P-D, et al.. Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant and Cell Physiology. 1999;40(8):800–7. doi: 10.1093/oxfordjournals.pcp.a029608 PubMed DOI
Zhu X, Wang M, Li X, Jiu S, Wang C, Fang J. Genome-wide analysis of the sucrose synthase gene family in grape (Vitis vinifera): structure, evolution, and expression profiles. Genes. 2017;8(4):111. PubMed PMC
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al.. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research. 2012;40(D1):D1178–D86. doi: 10.1093/nar/gkr944 PubMed DOI PMC
Joshi T, Fitzpatrick MR, Chen S, Liu Y, Zhang H, Endacott RZ, et al.. Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding. Nucleic Acids Research. 2014;42(D1):D1245–D52. doi: 10.1093/nar/gkt905 PubMed DOI PMC
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al.. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research. 2017;45(D1):D200–D3. doi: 10.1093/nar/gkw1129 PubMed DOI PMC
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research. 2003;31(13):3784–8. doi: 10.1093/nar/gkg563 PubMed DOI PMC
Wolfe D, Dudek S, Ritchie MD, Pendergrass SA. Visualizing genomic information across chromosomes with PhenoGram. BioData Mining. 2013;6(1):1–12. doi: 10.1186/1756-0381-6-1 PubMed DOI PMC
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33(7):1870–4. doi: 10.1093/molbev/msw054 PubMed DOI PMC
Jabbir F, Irfan M, Mustafa G, Ahmad HI. Bioinformatics approaches to explore the phylogeny and role of BRCA1 in breast cancer. Critical Reviews™ in Eukaryotic Gene Expression. 2019;29(6). doi: 10.1615/CritRevEukaryotGeneExpr.2019030785 PubMed DOI
Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research. 2006;34(suppl_2):W369–W73. doi: 10.1093/nar/gkl198 PubMed DOI PMC
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al.. The Pfam protein families database. Nucleic Acids Research. 2012;40(D1):D290–D301. doi: 10.1093/nar/gkr1065 PubMed DOI PMC
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al.. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research. 2002;30(1):325–7. doi: 10.1093/nar/30.1.325 PubMed DOI PMC
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5. doi: 10.1126/science.290.5494.1151 PubMed DOI
Doron-Faigenboim A, Pupko T. A combined empirical and mechanistic codon model. Molecular Biology and Evolution. 2007;24(2):388–97. doi: 10.1093/molbev/msl175 PubMed DOI
Ahmad HI, Liu G, Jiang X, Liu C, Chong Y, Huarong H. Adaptive molecular evolution of MC 1R gene reveals the evidence for positive diversifying selection in indigenous goat populations. Ecology and evolution. 2017;7(14):5170–80. doi: 10.1002/ece3.2919 PubMed DOI PMC
Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13(5):555–6. doi: 10.1093/bioinformatics/13.5.555 PubMed DOI
Ahmad MJ, Ahmad HI, Adeel MM, Liang A, Hua G, Murtaza S, et al.. Evolutionary analysis of makorin ring finger protein 3 reveals positive selection in mammals. Evolutionary Bioinformatics. 2019;15:1176934319834612. doi: 10.1177/1176934319834612 PubMed DOI PMC
Pond SLK, Frost SD. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005;21(10):2531–3. doi: 10.1093/bioinformatics/bti320 PubMed DOI
Ahmad HI, Asif AR, Ahmad MJ, Jabbir F, Adnan M, Ahmed S, et al.. Adaptive evolution of peptidoglycan recognition protein family regulates the innate signaling against microbial pathogens in vertebrates. Microbial Pathogenesis. 2020;147:104361. doi: 10.1016/j.micpath.2020.104361 PubMed DOI
Ahmad HI, Zhou J, Ahmad MJ, Afzal G, Jiang H, Zhang X, et al.. Adaptive selection in the evolution of programmed cell death-1 and its ligands in vertebrates. Aging (Albany NY). 2020;12(4):3516. doi: 10.18632/aging.102827 PubMed DOI PMC
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al.. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant. 2020;13(8):1194–202. doi: 10.1016/j.molp.2020.06.009 PubMed DOI
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al.. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research. 2012;41(D1):D808–D15. doi: 10.1093/nar/gks1094 PubMed DOI PMC
Ahmad HI, Ahmad MJ, Adeel MM, Asif AR, Du X. Positive selection drives the evolution of endocrine regulatory bone morphogenetic protein system in mammals. Oncotarget. 2018;9(26):18435. doi: 10.18632/oncotarget.24240 PubMed DOI PMC
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al.. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–83. doi: 10.1038/nature08670 PubMed DOI
Song B, An L, Han Y, Gao H, Ren H, Zhao X, et al.. Transcriptome profile of near-isogenic soybean lines for β-conglycinin α-subunit deficiency during seed maturation. PLoS One. 2016;11(8):e0159723. doi: 10.1371/journal.pone.0159723 PubMed DOI PMC
Chen Q, Wu W, Zhao T, Tan W, Tian J, Liang C. Complex Gene Regulation Underlying Mineral Nutrient Homeostasis in Soybean Root Response to Acidity Stress. Genes. 2019;10(5):402. doi: 10.3390/genes10050402 PubMed DOI PMC
Chen A, He S, Li F, Li Z, Ding M, Liu Q, et al.. Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns. BMC Plant Biology. 2012;12(1):1–17. doi: 10.1186/1471-2229-12-85 PubMed DOI PMC
Hardin SC, Huber SC. Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. Plant Physiol Biochem. 2004;42(3):197–208. doi: 10.1016/j.plaphy.2003.12.004 PubMed DOI
Huber SC, Huber JL, Liao P-C, Gage DA, McMichael RW Jr, Chourey PS, et al.. Phosphorylation of serine-15 of maize leaf sucrose synthase (occurrence in vivo and possible regulatory significance). Plant Physiology. 1996;112(2):793–802. doi: 10.1104/pp.112.2.793 PubMed DOI PMC
Zou C, Lu C, Shang H, Jing X, Cheng H, Zhang Y, et al.. Genome‐W ide Analysis of the Sus Gene Family in Cotton. Journal of Integrative Plant Biology. 2013;55(7):643–53. doi: 10.1111/jipb.12068 PubMed DOI
Kong H, Landherr LL, Frohlich MW, Leebens‐Mack J, Ma H, DePamphilis CW. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. The Plant Journal. 2007;50(5):873–85. doi: 10.1111/j.1365-313X.2007.03097.x PubMed DOI
Li W-H, Gojobori T, Nei M. Pseudogenes as a paradigm of neutral evolution. Nature. 1981;292(5820):237–9. doi: 10.1038/292237a0 PubMed DOI
Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res. 2005;15(9):1292–7. doi: 10.1101/gr.4064205 PubMed DOI PMC
An X, Chen Z, Wang J, Ye M, Ji L, Wang J, et al.. Identification and characterization of the Populus sucrose synthase gene family. Gene. 2014;539(1):58–67. doi: 10.1016/j.gene.2014.01.062 PubMed DOI
Vision TJ, Brown DG, Tanksley SD. The origins of genomic duplications in Arabidopsis. Science. 2000;290(5499):2114–7. doi: 10.1126/science.290.5499.2114 PubMed DOI
Wang Z, Wei P, Wu M, Xu Y, Li F, Luo Z, et al.. Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta. 2015;242(1):153–66. doi: 10.1007/s00425-015-2297-1 PubMed DOI PMC
Zourelidou M, De Torres‐Zabala M, Smith C, Bevan MW. Storekeeper defines a new class of plant‐specific DNA‐binding proteins and is a putative regulator of patatin expression. The Plant Journal. 2002;30(4):489–97. doi: 10.1046/j.1365-313x.2002.01302.x PubMed DOI
Xu S-M, Brill E, Llewellyn DJ, Furbank RT, Ruan Y-L. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Molecular Plant. 2012;5(2):430–41. doi: 10.1093/mp/ssr090 PubMed DOI
Islam MZ, Hu X-M, Jin L-F, Liu Y-Z, Peng S-A. Genome-wide identification and expression profile analysis of citrus sucrose synthase genes: investigation of possible roles in the regulation of sugar accumulation. PLoS One. 2014;9(11):e113623. doi: 10.1371/journal.pone.0113623 PubMed DOI PMC
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology. 2004;4(1):1–21. doi: 10.1186/1471-2229-4-10 PubMed DOI PMC
Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 1998;29(1):467–501.
Cannon SB, Kozik A, Chan B, Michelmore R, Young ND. DiagHunter and GenoPix2D: programs for genomic comparisons, large-scale homology discovery and visualization. Genome Biology. 2003;4(10):1–8. doi: 10.1186/gb-2003-4-10-r68 PubMed DOI PMC
Hirose T, Scofield GN, Terao T. An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci. 2008;174(5):534–43.
Meslin C, Mugnier S, Callebaut I, Laurin M, Pascal G, Poupon A, et al.. Evolution of genes involved in gamete interaction: evidence for positive selection, duplications and losses in vertebrates. PLoS One. 2012:e44548. doi: 10.1371/journal.pone.0044548 PubMed DOI PMC
Ratnakumar A, Mousset S, Glémin S, Berglund J, Galtier N, Duret L, et al.. Detecting positive selection within genomes: the problem of biased gene conversion. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1552):2571–80. doi: 10.1098/rstb.2010.0007 PubMed DOI PMC
Force A, Lynch M, Pickett FB, Amores A, Yan Y-l, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531–45. doi: 10.1093/genetics/151.4.1531 PubMed DOI PMC
Sémon M, Wolfe KH. Consequences of genome duplication. Current opinion in genetics & development. 2007;17(6):505–12. doi: 10.1016/j.gde.2007.09.007 PubMed DOI
Fetterman CD, Rannala B, Walter MA. Identification and analysis of evolutionary selection pressures acting at the molecular level in five forkhead subfamilies. BMC evolutionary biology. 2008;8(1):261. doi: 10.1186/1471-2148-8-261 PubMed DOI PMC
Flagel LE, Wendel JF. Gene duplication and evolutionary novelty in plants. New Phytol. 2009;183(3):557–64. doi: 10.1111/j.1469-8137.2009.02923.x PubMed DOI
Xiao X, Tang C, Fang Y, Yang M, Zhou B, Qi J, et al.. Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. The FEBS Journal. 2014;281(1):291–305. doi: 10.1111/febs.12595 PubMed DOI
Li M, Feng F, Cheng L. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One. 2012;7(3):e33055. doi: 10.1371/journal.pone.0033055 PubMed DOI PMC
Delhaize E, Ma JF, Ryan PR. Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci. 2012;17(6):341–8. doi: 10.1016/j.tplants.2012.02.008 PubMed DOI
Wang J, Hou Q, Li P, Yang L, Sun X, Benedito VA, et al.. Diverse functions of multidrug and toxin extrusion (MATE) transporters in citric acid efflux and metal homeostasis in Medicago truncatula. The Plant Journal. 2017;90(1):79–95. doi: 10.1111/tpj.13471 PubMed DOI
Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24(1):23–58.
Yang ZB, Eticha D, Rotter B, Rao IM, Horst WJ. Physiological and molecular analysis of polyethylene glycol‐induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytol. 2011;192(1):99–113. doi: 10.1111/j.1469-8137.2011.03784.x PubMed DOI
Saftner RA, Wyse RE. Effect of plant hormones on sucrose uptake by sugar beet root tissue discs. Plant Physiology. 1984;74(4):951–5. doi: 10.1104/pp.74.4.951 PubMed DOI PMC
Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR. The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. The Plant Cell. 2004;16(2):406–21. doi: 10.1105/tpc.018077 PubMed DOI PMC
Yang Z-B, Eticha D, Albacete A, Rao IM, Roitsch T, Horst WJ. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). Journal of Experimental Botany. 2012;63(8):3109–25. doi: 10.1093/jxb/ers038 PubMed DOI PMC