Impact of electrolyte solution on electrochemical oxidation treatment of Escherichia coli K-12 by boron-doped diamond electrodes

. 2022 Jun ; 74 (6) : 924-931. [epub] 20220308

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35239229

Grantová podpora
LM2018110 Ministerstvo Školství, Mládeže a Tělovýchovy
SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760 Ministerstvo Školství, Mládeže a Tělovýchovy
SVV 260568 Ministerstvo Školství, Mládeže a Tělovýchovy

We studied the disinfection efficacy of boron-doped electrodes on Escherichia coli-contaminated water-based solutions in three different electrolytes, physiological solution (NaCl), phosphate buffer (PB), and phosphate buffer saline (PBS). The effect of the electrochemical oxidation treatment on the bacteria viability was studied by drop and spread plate cultivation methods, and supported by optical density measurements. We have found that bacterial suspensions in NaCl and PBS underwent a total inactivation of all viable bacteria within 10 min of the electrochemical treatment. By contrast, experiments performed in the PB showed a relatively minor decrease of viability by two orders of magnitude after 2 h of the treatment, which is almost comparable with the untreated control. The enhanced bacterial inactivation was assigned to reactive chlorine species, capable of penetrating the bacterial cytoplasmic membrane and killing bacteria from within.

Zobrazit více v PubMed

Bruguera-Casamada, C., Sirés, I., Prieto, M.J., Brillas, E. and Araujo, R.M. (2016) The ability of electrochemical oxidation with a BDD anode to inactivate Gram-negative and Gram-positive bacteria in low conductivity sulfate medium. Chemosphere 163, 516-524.

Bruguera-Casamada, C., Sirés, I., Brillas, E. and Araujo, R.M. (2017) Effect of electrogenerated hydroxyl radicals, active chlorine and organic matter on the electrochemical inactivation of Pseudomonas aeruginosa using BDD and dimensionally stable anodes. Sep Purif Technol 178, 224-231.

Cano, A., Cañizares, P., Barrera-Díaz, C., Sáez, C. and Rodrigo, M.A. (2012) Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters. Chem Eng J 211-212, 463-469.

Chaplin, B.P. (2014) Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ Sci Process Impacts 16, 1182-1203.

Cho, M., Kim, J., Kim, J.Y., Yoon, J. and Kim, J.-H. (2010) Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res 44, 3410-3418.

Edberg, S.C., Rice, E.W., Karlin, R.J. and Allen, M.J. (2000) Escherichia coli: the best biological drinking water indicator for public health protection. J Appl Microbiol 88(S1), 106S-116S.

Feng, W., Deletic, A., Wang, Z., Zhang, X., Gengenbach, T. and McCarthy, D.T. (2019) Electrochemical oxidation disinfects urban stormwater: major disinfection mechanisms and longevity tests. Sci Total Environ 646, 1440-1447.

Frontistis, Z., Brebou, C., Venieri, D., Mantzavinos, D. and Katsaounis, A. (2011) BDD anodic oxidation as tertiary wastewater treatment for the removal of emerging micro-pollutants, pathogens and organic matter. J Chem Technol Biotechnol 86, 1233-1236.

Ghernaout, D., Naceur, M.W. and Aouabed, A. (2011) On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalination 270, 9-22.

Gusmão, I.C.C.P., Moraes, P.B. and Bidoia, E.D. (2010) Studies on the electrochemical disinfection of water containing Escherichia coli using a dimensionally stable anode. Braz Arch Biol Technol 53, 1235-1244.

Hamoda, M.F. and Al-Attar, I.M.S. (1995) Effects of high sodium chloride concentrations on activated sludge treatment. Water Sci Technol 31, 61-72.

Huang, X., Qu, Y., Cid, C.A., Finke, C., Hoffmann, M.R., Lim, K. and Jiang, S.C. (2016) Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. Water Res 92, 164-172.

Jeong, J., Kim, J.Y. and Yoon, J. (2006) The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ Sci Technol 40, 6117-6122.

Jeong, J., Kim, J.Y., Cho, M., Choi, W. and Yoon, J. (2007) Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode. Chemosphere 67, 652-659.

Jin, Y., Shi, Y., Chen, R., Chen, X., Zheng, X. and Liu, Y. (2019) Electrochemical disinfection using a modified reticulated vitreous carbon cathode for drinking water treatment. Chemosphere 215, 380-387.

Joyce, E., Mason, T.J., Phull, S.S. and Lorimer, J.P. (2003) The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions. Ultrason Sonochem 10, 231-234.

Kerwick, M.I., Reddy, S.M., Chamberlain, A.H.L. and Holt, D.M. (2005) Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim Acta 50, 5270-5277.

Kraft, A., Wünsche, M., Stadelmann, M. and Blaschke, M. (2003) Electrochemical water disinfection. Recent Res Devel Electrochem 6, 27-55.

Lacasa, E., Tsolaki, E., Sbokou, Z., Rodrigo, M.A., Mantzavinos, D. and Diamadopoulos, E. (2013) Electrochemical disinfection of simulated ballast water on conductive diamond electrodes. Chem Eng J 223, 516-523.

Long, Y., Ni, J. and Wang, Z. (2015) Subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection with boron-doped diamond anode: a comparative study of three electrolytes. Water Res 84, 198-206.

Mackuľak, T., Medvecká, E., Vojs Staňová, A., Brandeburová, P., Grabic, R., Golovko, O., Marton, M., Bodík, I. et al. (2020) Boron doped diamond electrode - the elimination of psychoactive drugs and resistant bacteria from wastewater. Vacuum 171, 108957.

Martínez-Huitle, C.A. and Brillas, E. (2021) A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode. Curr Opin Solid State Mater Sci 25, 100926.

Moreno-Andrés, J., Ambauen, N., Vadstein, O., Hallé, C., Acevedo-Merino, A., Nebot, E. and Meyn, T. (2018) Inactivation of marine heterotrophic bacteria in ballast water by an electrochemical advanced oxidation process. Water Res 140, 377-386.

Mousset, E., Trellu, C., Olvera-Vargas, H., Pechaud, Y., Fourcade, F. and Oturan, M.A. (2021) Electrochemical technologies coupled with biological treatments. Curr Opin Electrochem 26, 100668.

Panizza, M. and Cerisola, G. (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51, 191-199.

Pointer Malpass, G.R. and de Jesus Motheo, A. (2021) Recent advances on the use of active anodes in environmental electrochemistry. Curr Opin Electrochem 27, 100689.

Polcaro, A.M., Vacca, A., Mascia, M., Palmas, S., Pompei, R. and Laconi, S. (2007) Characterization of a stirred tank electrochemical cell for water disinfection processes. Electrochim Acta 52, 2595-2602.

Qu, X., Alvarez, P.J.J. and Li, Q. (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47, 3931-3946.

Särkkä, H., Bhatnagar, A. and Sillanpää, M. (2015) Recent developments of electro-oxidation in water treatment - a review. J Electroanal Chem 754, 46-56.

Sivaprakasam, S., Mahadevan, S., Sekar, S. and Rajakumar, S. (2008) Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microb Cell Factories 7, 15.

Son, H., Cho, M., Chung, H., Choi, S. and Yoon, J. (2004) Bactericidal activity of mixed oxidants: comparison with free chlorine. J Ind Eng Chem 10, 705-709.

Zhang, Y.Q., Wu, Q.P., Zhang, J.M. and Yang, X.H. (2011) Effects of ozone on membrane permeability and ultrastructure in Pseudomonas aeruginosa. J Appl Microbiol 111, 1006-1015.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...