Metabolome and transcriptome related dataset for pheromone biosynthesis in an aggressive forest pest Ips typographus

. 2022 Apr ; 41 () : 107912. [epub] 20220208

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35242907
Odkazy

PubMed 35242907
PubMed Central PMC8857447
DOI 10.1016/j.dib.2022.107912
PII: S2352-3409(22)00124-X
Knihovny.cz E-zdroje

Eurasian spruce bark beetle, Ips typographus, is an aggressive pest among spruce vegetation. I. typographus host trees colonization is mediated by aggregation pheromone, consisting of 2-methyl-3-buten-2-ol and cis-verbenol produced in the beetle gut. Other biologically active compounds such as ipsdienol and verbenone have also been detected. 2-Methyl-3-buten-2-ol and ipsdienol are produced de-novo in the mevalonate pathway and cis-verbenol is oxidized from α-pinene sequestrated from the host. The pheromone production is presumably connected with further changes in the primary and secondary metabolisms in the beetle. To evaluate such possibilities, we obtained qualitative metabolomic data from the analysis of beetle guts in different life stages. We used Ultra-high-performance liquid chromatography-electrospray ionization-high resolution tandem mass spectrometry (UHPLC-ESI-HRMS/MS). The data were dereplicated using metabolomic software (XCMS, Camera, and Bio-Conductor) and approximately 3000 features were extracted. The metabolite was identified using GNPS databases and de-novo annotation in Sirius program followed by manual curation. Further, we obtained differential gene expression (DGE) of RNA sequencing data for mevalonate pathway genes and CytochromeP450 (CyP450) genes from the gut tissue of the beetle to delineate their role on life stage-specific pheromone biosynthesis. CyP450 gene families were classified according to subclasses and given individual expression patterns as heat maps. Three mevalonate pathway genes and five CyP450 gene relative expressions were analyzed using quantitative real-time (qRT) PCR, from the gut tissue of different life stage male/female beetles, as extended knowledge of related research article (Ramakrishnan et al., 2022). This data provides essential information on pheromone biosynthesis at the molecular level and supports further research on pheromone biosynthesis and detoxification in conifer bark beetles.

Zobrazit více v PubMed

Benton H.P., Want E.J., Ebbels T.M.D. Correction of mass calibration gaps in liquid chromatography-mass spectrometry metabolomics data. Bioinformatics. 2010;26:2488–2489. doi: 10.1093/bioinformatics/btq441. PubMed DOI

Cheng C.H., Wickham J.D., Chen L., Xu D.D., Lu M., Sun J.H. Bacterial microbiota protect an invasive bark beetle from a pine defensive compound. Microbiome. 2018;6:132. doi: 10.1186/s40168-018-0518-0. PubMed DOI PMC

Chong J., Soufan O., Li C., Caraus I., Li S.Z., Bourque G., Wishart D.S., Xia J.G. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–W494. doi: 10.1093/nar/gky310. PubMed DOI PMC

Menezes R.C., Piechulla B., Warber D., Svatoš A., Kai M. Metabolic profiling of rhizobacteria serratia plymuthica and bacillus subtilis revealed intra- and interspecific differences and elicitation of plipastatins and short peptides due to co-cultivation. Front. Microbiol. 2021;12 doi: 10.3389/fmicb.2021.685224. PubMed DOI PMC

Ramakrishnan R., Hradecký J., Roy A., Kalinová B., Mendezes C.R., Synek J., Bláha J., Svatoš A., Jirošová A. Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive forest pest Ips typographus. Insect Biochem. Mol. Biol. 2022:0965–1748. doi: 10.1016/j.ibmb.2021.103680. PubMed DOI

Roy A., George S., Palli S.R. Multiple functions of CREB-binding protein during postembryonic development: identification of target genes. BMC Genom. 2017;18:996. doi: 10.1186/s12864-017-4373-3. PubMed DOI PMC

Roy A., Palli S.R. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genom. 2018;19:934. doi: 10.1186/s12864-018-5323-4. PubMed DOI PMC

Pang Z., Chong J., Zhou G., Morais D., Chang L., Barrette M., Gauthier C., Jacques P.E., Li S., Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC

Smith C.A., Want E.J., O'Maille G., Abagyan R., Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI

Tautenhahn R., Böttcher C., Neumann S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 2008;9:504. doi: 10.1186/1471-2105-9-504. PubMed DOI PMC

Wang M., Carver J., Phelan V., et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...