• This record comes from PubMed

Enhancement of Lodging Resistance and Lignin Content by Application of Organic Carbon and Silicon Fertilization in Brassica napus L

. 2022 ; 13 () : 807048. [epub] 20220217

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

This study was aimed to investigate the effects of organic carbon and silicon fertilizers on the lodging resistance, yield, and economic performance of rapeseed. Two cultivars, namely Jayou (lodging-resistant) and Chuannongyou (lodging-susceptible), were selected to evaluate the effects of various fertilizer treatments on rapeseed culm morphology, lignin accumulation, and their relationships with their lodging resistance indices. The results showed that both organic carbon and silicon fertilizer applications increased the plant height, basal stem diameter, internode plumpness, and bending strength of rapeseed in both the studied years. The bending strength was significantly and positively correlated with the lodging resistance index and lignin content. It was found that both organic carbon and silicon fertilizers had improved the activities of lignin biosynthesis enzymes (phenylalanine ammonia-lyase, 4-coumarate:CoA ligase, cinnamyl alcohol dehydrogenase, and peroxiredoxins) and their related genes to increase lignin accumulation in the culm, which ultimately improved the lodging resistance. At the same time, the thickness of the stem cortex, vascular bundle area, and xylem area was increased, and the stem strength was improved. The effect of silicon fertilizer was better than that of organic carbon fertilizer, but there was no significant difference with the mixed application of silicon fertilizer and organic carbon fertilizer. Similarly, silicon fertilizer increased the number of pods, significantly increased the yield, and improved the economic benefit, while organic carbon fertilizer had no significant effect on the yield. Therefore, we believe that organic carbon and silicon fertilizer can improve the lodging resistance of rape stems by improving the lignin accumulation and the mechanical tissue structure. Still, the effect of silicon fertilizer is the best. Considering the economic benefits, adding silicon fertilizer can obtain more net income than the mixed application of silicon fertilizer and organic carbon fertilizer.

See more in PubMed

Ahmad I., Kamran M., Ali S., Bilegjargal B., Cai T., Ahmad S., et al. (2018). Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Res. 222 66–77. 10.1016/j.fcr.2018.03.015 DOI

Artyszak A. (2018). Effect of silicon fertilization on crop yield quantity and quality—A literature review in Europe. Plants 7:54. 10.3390/plants7030054 PubMed DOI PMC

Berry P., Berry S. (2015). Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivum L.). Euphytica 205 671–689. 10.1007/s10681-015-1387-2 DOI

Berry P., Sterling M., Spink J., Baker C., Sylvester-Bradley R., Mooney S., et al. (2004). Understanding and reducing lodging in cereals. Adv. Agron. 84 215–269. 10.1016/S0065-2113(04)84005-7 DOI

Boudet A. M., Kajita S., Grima-Pettenati J., Goffner D. (2003). Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci. 8 576–581. 10.1016/j.tplants.2003.10.001 PubMed DOI

Cai A., Xu M., Wang B., Zhang W., Liang G., Hou E., et al. (2019). Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 189 168–175. 10.1016/j.still.2018.12.022 DOI

Caterina G. T. R. E. V., Ghizzoni M. R., Paulo C. U. G. M.-J., Smulders V. T. M. J. (2017). Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection. Euphytica 213:163. 10.1007/s10681-017-1939-8 DOI

Chen X., Shi C., Yin Y., Wang Z., Shi Y., Peng D., et al. (2011). Relationship between lignin metabolism and lodging resistance in wheat. Acta Agron. Sin. 37 1616–1622. 10.3724/SP.J.1006.2011.01616 DOI

Cleugh H., Miller J., Böhm M. (1998). Direct mechanical effects of wind on crops. Agroforestry Systems 41 85–112. 10.1023/A:1006067721039 DOI

Dorairaj D., Ismail M. R., Sinniah U. R., Tan K. B. (2020). Silicon mediated improvement in agronomic traits, physiological parameters and fiber content in Oryza sativa. Acta Physiol. Plantarum 42:38. 10.1007/s11738-020-3024-5 DOI

Fleck A. T., Nye T., Repenning C., Stahl F., Zahn M., Schenk M. K. (2011). Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J. Exp. Bot. 62 2001–2011. 10.1093/jxb/erq392 PubMed DOI PMC

Gottardi S., Iacuzzo F., Tomasi N., Cortella G., Manzocco L., Pinton R., et al. (2012). Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants. Plant Physiol. Biochem. 56 14–23. 10.1016/j.plaphy.2012.04.002 PubMed DOI

Greger M., Landberg T., Vaculík M. (2018). Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 7:41. 10.3390/plants7020041 PubMed DOI PMC

Guo J., Jia Y., Chen H., Zhang L., Yang J., Zhang J., et al. (2019). Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci. Rep. 9:1248. 10.1038/s41598-018-37838-3 PubMed DOI PMC

Haddad C., Arkoun M., Jamois F., Schwarzenberg A., Yvin J.-C., Etienne P., et al. (2018). Silicon promotes growth of Brassica napus L. and delays leaf senescence induced by nitrogen starvation. Front. Plant Sci. 9:516. 10.3389/fpls.2018.00516 PubMed DOI PMC

Hussain S., Liu T., Iqbal N., Brestic M., Pang T., Mumtaz M., et al. (2020). Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochem. Photobiol. Sci. 19 462–472. 10.1039/C9PP00369J PubMed DOI

Hussain S., Shuxian L., Mumtaz M., Shafiq I., Iqbal N., Brestic M., et al. (2021). Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). J. Hazard. Mater. 401:123256. 10.1016/j.jhazmat.2020.123256 PubMed DOI

Jo Heuschele D., Smith K. P., Annor G. A. (2020). Variation in Lignin, Cell Wall-Bound p-Coumaric, and Ferulic Acid in the Nodes and Internodes of Cereals and Their Impact on Lodging. J. Agric. Food Chem. 68 12569–12576. 10.1021/acs.jafc.0c04025 PubMed DOI

Kaack K., Schwarz K.-U. (2001). Morphological and mechanical properties of Miscanthus in relation to harvesting, lodging, and growth conditions. Ind. Crops Prod. 14 145–154. 10.1016/S0926-6690(01)00078-4 DOI

Kamran M., Ahmad I., Wang H., Wu X., Xu J., Liu T., et al. (2018a). Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis. Field Crops Res. 224 148–159. 10.1016/j.fcr.2018.05.011 DOI

Kamran M., Cui W., Ahmad I., Meng X., Zhang X., Su W., et al. (2018b). Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regul. 84 317–332. 10.1007/s10725-017-0342-8 DOI

Kim Y.-H., Khan A. L., Waqas M., Lee I.-J. (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front. Plant Sci. 8:510. 10.3389/fpls.2017.00510 PubMed DOI PMC

Kong E., Liu D., Guo X., Yang W., Sun J., Li X., et al. (2013). Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J. 1 43–49. 10.1016/j.cj.2013.07.012 DOI

Kraska J. E., Breitenbeck G. A. (2010). Simple, robust method for quantifying silicon in plant tissue. Communications in Soil Sci. Plant Anal. 41 2075–2085. 10.1080/00103624.2010.498537 DOI

Kuai J., Sun Y., Guo C., Zhao L., Zuo Q., Wu J., et al. (2017). Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics. Field Crops Res. 200 88–97. 10.1016/j.fcr.2016.10.007 DOI

Laîné P., Haddad C., Arkoun M., Yvin J.-C., Etienne P. (2019). Silicon Promotes Agronomic Performance in Brassica napus Cultivated under Field Conditions with Two Nitrogen Fertilizer Inputs. Plants 8:137. 10.3390/plants8050137 PubMed DOI PMC

Lehmann J., Joseph S. (2015). Biochar for Environmental Management: Science, Technology and Implementation. England, UK: Routledge. 10.4324/9780203762264 DOI

Lei Q., Guo J., Kong F., Cao J., Wang L., Zhu W., et al. (2021a). Bioinspired Cell Silicification: from Extracellular to Intracellular. J. Am. Chem. Soc. 143 6305–6322. 10.1021/jacs.1c00814 PubMed DOI

Lei S., Quanyi S., Haihong Z., Shuhui C., Wenqin K. (2021b). Effect of spraying organic carbon fertilizer on photosynthetic characteristics of wheat under weak light. J. Northern Agric. 49 65–70.

Li X., Li Q., Yang T., Nie Z., Chen G., Hu L. (2016). Responses of plant development, biomass and seed production of direct sown oilseed rape (Brassica napus) to nitrogen application at different stages in Yangtze River Basin. Field Crops Res. 194 12–20. 10.1016/j.fcr.2016.04.024 DOI

Liang S., Li Z., Li X., Xie H., Zhu R., Lin J., et al. (2013). Effects of stem structural characters and silicon content on lodging resistance in rice (Oryza sativa L.). Res. Crops 14 621–636.

Liang Y., Nikolic M., Bélanger R., Gong H., Song A. (2015). Silicon in Agriculture, Springer: Dordrecht, 209–223. 10.1007/978-94-017-9978-2_11 DOI

Ling G., Jianjun H., Bin Z., Tao L., Rui S., Ming Z. (2007). Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta agro. Sin. 33, 1688–1695.

LIU W.-G., Hussain S., Ting L., Zou J.-l, Ren M.-l, Tao Z., et al. (2019). Shade stress decreases stem strength of soybean through restraining lignin biosynthesis. J. Integr. Agric. 18 43–53. 10.1016/S2095-3119(18)61905-7 DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI

Ma J. F., Yamaji N. (2006). Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11 392–397. 10.1016/j.tplants.2006.06.007 PubMed DOI

Ma Q.-H. (2010). Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J. Exp. Bot. 61 2735–44. 10.1093/jxb/erq107 PubMed DOI PMC

Matichenkov V., Bocharnikova E. (2001). “The relationship between silicon and soil physical and chemical properties,” in Silicon in Agriculture Studies in Plant Science, eds Datnoff L. E., Snyder G. H., Korndörfer G. H. (Amsterdam: Elsevier; ), 209–219. 10.1016/S0928-3420(01)80017-3 DOI

Okuno A., Hirano K., Asano K., Takase W., Masuda R., Morinaka Y., et al. (2014). New Approach to Increasing Rice Lodging Resistance and Biomass Yield Through the Use of High Gibberellin Producing Varieties. PLoS One 9:e86870. 10.1371/journal.pone.0086870 PubMed DOI PMC

Pan G., Bian R., Cheng K. (2017). From biowaste treatment to novel bio-material manufacturing: biomaterial science and technology based on biomass pyrolysis. Sci. Technol. Rev. 35 82–93.

Rajkumara S. (2008). Lodging in cereals-a review. Agric. Rev. Agric. Res. Commun. Centre India 29:55.

Rogers L. A., Dubos C., Cullis I. F., Surman C., Poole M., Willment J., et al. (2005). Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J. Exp. Bot. 56 1651–1663. 10.1093/jxb/eri162 PubMed DOI

Rolland F., Winderickx J., Thevelein J. M. (2001). Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26 310–317. 10.1016/S0968-0004(01)01805-9 PubMed DOI

Salman D., Morteza S., Dariush Z., Abbas G. M., Reza Y., Ehsan G. D., et al. (2012). Application of nitrogen and silicon rates on morphological and chemical lodging related characteristics in rice (Oryza sativa L.) at North of Iran. J. Agric. Sci. 4:12. 10.5539/jas.v4n6p12 DOI

Schwanninger M., Hinterstoisser B. (2002). Klason lignin: modifications to improve the precision of the standardized determination. Holzforschung 56 161–166. 10.1515/HF.2002.027 DOI

Shaomeng Z., Haiyan M., Shunlin Z., Qiang H., Hu X., Wenzhi G., et al. (2021). Effects of Organic Carbon Fertilizer on the Resistance of Potato Leaves to Anthesis under Phenolic Acid Stress. J. Sichuan Agric. University 37 836–841.

Sun Q., Liu X., Yang J., Liu W., Du Q., Wang H., et al. (2018). MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Mol. Plant 11 806–814. 10.1016/j.molp.2018.03.013 PubMed DOI

Teixeira G. C. M., de Mello Prado R., Oliveira K. S., D’Amico-Damião V., da Silveira Sousa Junior G. (2020). Silicon increases leaf chlorophyll content and iron nutritional efficiency and reduces iron deficiency in sorghum plants. J. Soil Sci. Plant Nutr. 20 1311–1320. 10.1007/s42729-020-00214-0 DOI

Wang C., Hu D., Liu X., She H., Ruan R., Yang H., et al. (2015a). Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crops Res. 180 46–53. 10.1016/j.fcr.2015.05.009 DOI

Wang C., Wu Ruan R., Hui Yuan X., Hu D., Yang H., Li Y., et al. (2015b). Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat. Plant Product. Sci. 18 218–227. 10.1626/pps.18.218 PubMed DOI

Wang J., Zhu J., Lin Q., Li X., Teng N., Li Z., et al. (2006). Effects of stem structure and cell wall components on bending strength in wheat. Chinese Sci. Bull. 51 815–823. 10.1007/s11434-006-0815-z DOI

Wang Y., Gao L., Shan Y., Liu Y., Tian Y., Xia T. (2012). Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci. Hortic. 141 7–16. 10.1016/j.scienta.2012.04.013 DOI

Wen B., Zhang Y., Hussain S., Wang S., Zhang X., Yang J., et al. (2020). Slight Shading Stress at Seedling Stage Does not Reduce Lignin Biosynthesis or Affect Lodging Resistance of Soybean Stems. Agronomy 10 544. 10.3390/agronomy10040544 DOI

Wu L., Zhang W., Ding Y., Zhang J., Cambula E. D., Weng F., et al. (2017). Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in japonica rice (Oryza sativa L.). Frontiers in Plant Science 8:881. 10.3389/fpls.2017.00881 PubMed DOI PMC

Wu W., Huang J., Cui K., Nie L., Wang Q., Yang F., et al. (2012). Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crops Res. 128 101–108. 10.1016/j.fcr.2012.01.002 DOI

Xu C., Gao Y., Tian B., Ren J., Meng Q., Wang P. (2017). Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Res. 200 71–79. 10.1016/j.fcr.2016.10.011 DOI

Xue J., Gou L., Zhao Y., Yao M., Yao H., Tian J., et al. (2016). Effects of light intensity within the canopy on maize lodging. Field Crops Res. 188 133–141. 10.1016/j.fcr.2016.01.003 PubMed DOI

Yao A., Liu Y., Luo X., Liu C., Tang Y., Wang S., et al. (2021). Mediation effects of different sulfur forms on solubility, uptake and accumulation of Cd in soil-paddy rice system induced by organic carbon and liming. Environ. Pollut. 279:116862. 10.1016/j.envpol.2021.116862 PubMed DOI

Yoon J., Choi H., An G. (2015). Roles of lignin biosynthesis and regulatory genes in plant development. J. Integrat. Plant Biol. 57 902–912. 10.1111/jipb.12422 PubMed DOI PMC

Zhang J., Li G., Song Y., Liu Z., Yang C., Tang S., et al. (2014). Lodging resistance characteristics of high-yielding rice populations. Field Crops Res. 161 64–74. 10.1016/j.fcr.2014.01.012 DOI

Zhang W., Wu L., Ding Y., Yao X., Wu X., Weng F., et al. (2017). Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). J. Plant Res. 130 859–871. 10.1007/s10265-017-0943-3 PubMed DOI

Zhang W., Wu L., Wu X., Ding Y., Li G., Li J., et al. (2016a). Lodging Resistance of Japonica Rice (Oryza Sativa L.): morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates. Rice 9:31. 10.1186/s12284-016-0103-8 PubMed DOI PMC

Zhang Y., Xu W., Wang H., Fang Y., Dong H., Qi X. (2016b). Progress in improving stem lodging resistance of Chinese wheat cultivars. Euphytica 212 275–286. 10.1007/s10681-016-1768-1 DOI

Zhang Y., Wang Y., Ye D., Wang W., Qiu X., Duan L., et al. (2019). Ethephon improved stalk strength of maize (Zea Mays L.) mainly through altering internode morphological traits to modulate mechanical properties under field conditions. Agronomy 9:186. 10.3390/agronomy9040186 DOI

Zhang Y., Yu S., Gong H.-J., Zhao H.-L., Li H.-L., Hu Y.-H., et al. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. J. Integrat. Agric. 17 2151–2159. 10.1016/S2095-3119(18)62038-6 DOI

Zhao Q., Dixon R. A. (2011). Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci. 16 227–233. 10.1016/j.tplants.2010.12.005 PubMed DOI

Zheng M., Chen J., Shi Y., Li Y., Yin Y., Yang D., et al. (2017). Manipulation of Lignin Metabolism by Plant Densities and Its Relationship With Lodging Resistance in Wheat. Sci. Rep. 7:41805. 10.1038/srep41805 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...