Transcriptional regulators of human oncoviruses: structural and functional implications for anticancer therapy

. 2022 Mar ; 4 (1) : zcac005. [epub] 20220303

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35252867

Transcription is often the first biosynthetic event of viral infection. Viruses produce preferentially viral transcriptional regulators (vTRs) essential for expressing viral genes and regulating essential host cell proteins to enable viral genome replication. As vTRs are unique viral proteins that promote the transcription of viral nucleic acid, vTRs interact with host proteins to suppress detection and immune reactions to viral infection. Thus, vTRs are promising therapeutic targets that are sequentially and structurally distinct from host cell proteins. Here, we review vTRs of three human oncoviruses: HBx of hepatitis B virus, HBZ of human T-lymphotropic virus type 1, and Rta of Epstein-Barr virus. We present three cunningly exciting and dangerous transcription strategies that make viral infections so efficient. We use available structural and functional knowledge to critically examine the potential of vTRs as new antiviral-anticancer therapy targets. For each oncovirus, we describe (i) the strategy of viral genome transcription; (ii) vTRs' structure and binding partners essential for transcription regulation; and (iii) advantages and challenges of vTR targeting in antiviral therapies. We discuss the implications of vTR regulation for oncogenesis and perspectives on developing novel antiviral and anticancer strategies.

Zobrazit více v PubMed

WHO Global Commission for the Certification of Smallpox Eradication  The Global Eradication of Smallpox. 1980; Geneva: World Health Organization.

Fenner  F.  A successful eradication campaign. Global eradication of smallpox. Rev. Infect. Dis.  1982; 4:916–930. PubMed

Raska  K.  Global eradication of smallpox. IX International Congress for Microbiology, Moscow, SE/66.2. 1966;

Danaei  G.  Global burden of infection-related cancer revisited. Lancet Oncol.  2012; 13:564–565. PubMed

de Martel  C., Ferlay  J., Franceschi  S., Vignat  J., Bray  F., Forman  D., Plummer  M.  Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol.  2012; 13:607–615. PubMed

Mui  U.N., Haley  C.T., Tyring  S.K.  Viral oncology: molecular biology and pathogenesis. J. Clin. Med.  2017; 6:111. PubMed PMC

Zur Hausen  H.  The search for infectious causes of human cancers: where and why. Virology. 2009; 392:1–10. PubMed

Bouvard  V., Baan  R., Straif  K., Grosse  Y., Secretan  B., El Ghissassi  F., Benbrahim-Tallaa  L., Guha  N., Freeman  C., Galichet  L.  et al. .  A review of human carcinogens – part B: biological agents. Lancet Oncol.  2009; 10:321–322. PubMed

Vandeven  N., Nghiem  P.  Pathogen-driven cancers and emerging immune therapeutic strategies. Cancer Immunol. Res.  2014; 2:9–14. PubMed PMC

Moore  P.S., Chang  Y.  Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer. 2010; 10:878–889. PubMed PMC

Wu  T.-C., Chang  M.-H., Jeang  K.-T.  Viruses and Human Cancer. 2021; 2nd edn.Cham, Switzerland: Springer International Publishing.

Tagaya  Y., Gallo  R.C.  The exceptional oncogenicity of HTLV-1. Front. Microbiol.  2017; 8:1425. PubMed PMC

De Clercq  E. De Clercq  E.  Antiviral agents. Advances in Pharmacology. 2013; 67:Cambridge, MA: Academic Press; 293–316. PubMed

Razonable  R.R.  Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin. Proc.  2011; 86:1009–1026. PubMed PMC

Fontana  R.J.  Side effects of long-term oral antiviral therapy for hepatitis B. Hepatology. 2009; 49:S185–S195. PubMed

De Clercq  E.  Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov.  2002; 1:13–25. PubMed

Gordon  D.E., Jang  G.M., Bouhaddou  M., Xu  J., Obernier  K., White  K.M., O’Meara  M.J., Rezelj  V.V., Guo  J.Z., Swaney  D.L.  et al. .  A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; 583:459–468. PubMed PMC

Liu  X., Hong  T., Parameswaran  S., Ernst  K., Marazzi  I., Weirauch  M.T., Fuxman Bass  J.I.  Human virus transcriptional regulators. Cell. 2020; 182:24–37. PubMed PMC

Jolma  A., Yan  J., Whitington  T., Toivonen  J., Nitta  R., Kazuhiro Rastas  P., Morgunova  E., Enge  M., Taipale  M., Wei  G.  et al. .  DNA-binding specificities of human transcription factors. Cell. 2013; 152:327–339. PubMed

Necasova  I., Janouskova  E., Klumpler  T., Hofr  C.  Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res.  2017; 45:12170–12180. PubMed PMC

Janouskova  E., Necasova  I., Pavlouskova  J., Zimmermann  M., Hluchy  M., Marini  V., Novakova  M., Hofr  C.  Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res.  2015; 43:2691–2700. PubMed PMC

Wu  J., Han  M., Li  J., Yang  X., Yang  D.. Tang  H.  Immunopathogenesis of HBV infection. Hepatitis B Virus Infection: Molecular Virology to Antiviral Drugs. 2020; Singapore: Springer Singapore; 71–107.

Flint  S.J., Racaniello  V.R., Rall  G.F., Skalka  A.M., Enquist  L.W.  Principles of Virology. 2020; Washington, DC: ASM Press.

Zhao  X.L., Yang  J.R., Lin  S.Z., Ma  H., Guo  F., Yang  R.F., Zhang  H.H., Han  J.C., Wei  L., Pan  X.B.  Serum viral duplex-linear DNA proportion increases with the progression of liver disease in patients infected with HBV. Gut. 2016; 65:502–511. PubMed

Podlaha  O., Wu  G., Downie  B., Ramamurthy  R., Gaggar  A., Subramanian  M., Ye  Z., Jiang  Z.  Genomic modeling of hepatitis B virus integration frequency in the human genome. PLoS One. 2019; 14:e0220376. PubMed PMC

Kosovsky  M.J., Huan  B., Siddiqui  A.  Purification and properties of rat liver nuclear proteins that interact with the hepatitis B virus enhancer 1. J. Biol. Chem.  1996; 271:21859–21869. PubMed

Slagle  B.L., Bouchard  M.J.  Hepatitis B virus X and regulation of viral gene expression. Cold Spring Harb. Perspect. Med.  2016; 6:a021402. PubMed PMC

Lucifora  J., Arzberger  S., Durantel  D., Belloni  L., Strubin  M., Levrero  M., Zoulim  F., Hantz  O., Protzer  U.  Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol.  2011; 55:996–1003. PubMed

Prieto  C., Montecinos  J., Jiménez  G., Riquelme  C., Garrido  D., Hernández  S., Loyola  A., Villanueva  R.A.  Phosphorylation of phylogenetically conserved amino acid residues confines HBx within different cell compartments of human hepatocarcinoma cells. Molecules. 2021; 26:1254. PubMed PMC

Sirma  H., Giannini  C., Poussin  K., Paterlini  P., Kremsdorf  D., Bréchot  C.  Hepatitis B virus X mutants, present in hepatocellular carcinoma tissue abrogate both the antiproliferative and transactivation effects of HBx. Oncogene. 1999; 18:4848–4859. PubMed

Cheng  B., Zheng  Y., Guo  X., Wang  Y., Liu  C.  Hepatitis B viral X protein alters the biological features and expressions of DNA repair enzymes in LO2 cells. Liver Int.  2010; 30:319–326. PubMed

Li  T., Robert  E.I., van Breugel  P.C., Strubin  M., Zheng  N.  A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4–DDB1 ubiquitin ligase machinery. Nat. Struct. Mol. Biol.  2010; 17:105–111. PubMed PMC

Hodgson  A.J., Hyser  J.M., Keasler  V.V., Cang  Y., Slagle  B.L.  Hepatitis B virus regulatory HBx protein binding to DDB1 is required but is not sufficient for maximal HBV replication. Virology. 2012; 426:73–82. PubMed PMC

Ramakrishnan  D., Xing  W., Beran  R.K., Chemuru  S., Rohrs  H., Niedziela-Majka  A., Marchand  B., Mehra  U., Zábranský  A., Doležal  M.  et al. .  Hepatitis B virus X protein function requires zinc binding. J. Virol.  2019; 93:e00250-19. PubMed PMC

Kornyeyev  D., Ramakrishnan  D., Voitenleitner  C., Livingston  C.M., Xing  W., Hung  M., Kwon  H.J., Fletcher  S.P., Beran  R.K.  Spatiotemporal analysis of hepatitis B virus X protein in primary human hepatocytes. J. Virol.  2019; 93:e00248-19. PubMed PMC

Vescovo  T., Pagni  B., Piacentini  M., Fimia  G.M., Antonioli  M.  Regulation of autophagy in cells infected with oncogenic human viruses and its impact on cancer development. Front. Cell Dev. Biol.  2020; 8:47. PubMed PMC

Murakami  S.  Hepatitis B virus X protein: structure, function and biology. Intervirology. 1999; 42:81–99. PubMed

Elmore  L.W., Hancock  A.R., Chang  S.F., Wang  X.W., Chang  S., Callahan  C.P., Geller  D.A., Will  H., Harris  C.C.  Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc. Natl Acad. Sci. U.S.A.  1997; 94:14707–14712. PubMed PMC

Liu  T., Zhang  L., Joo  D., Sun  S.-C.  NF-κB signaling in inflammation. Signal Transduct. Target. Ther.  2017; 2:17023. PubMed PMC

Weil  R., Sirma  H., Giannini  C., Kremsdorf  D., Bessia  C., Dargemont  C., Bréchot  C., Israël  A.  Direct association and nuclear import of the hepatitis B virus X protein with the NF-κB inhibitor IκBα. Mol. Cell. Biol.  1999; 19:6345–6354. PubMed PMC

Zhang  T.-Y., Chen  H.-Y., Cao  J.-L., Xiong  H.-L., Mo  X.-B., Li  T.-L., Kang  X.-Z., Zhao  J.-H., Yin  B., Zhao  X.  et al. .  Structural and functional analyses of hepatitis B virus X protein BH3-like domain and Bcl-xL interaction. Nat. Commun.  2019; 10:3192. PubMed PMC

Li  J., He  J., Fu  Y.M., Hu  X.W., Sun  L.Q., Huang  Y., Fan  X.G.  Hepatitis B virus X protein inhibits apoptosis by modulating endoplasmic reticulum stress response. Oncotarget. 2017; 8:96027–96034. PubMed PMC

Lu  G., Luo  H., Zhu  X.  Targeting the GRP78 pathway for cancer therapy. Front. Med.  2020; 7:351. PubMed PMC

Su  J.M., Lai  X.M., Lan  K.H., Li  C.P., Chao  Y., Yen  S.H., Chang  F.Y., Lee  S.D., Lee  W.P.  X protein of hepatitis B virus functions as a transcriptional corepressor on the human telomerase promoter. Hepatology. 2007; 46:402–413. PubMed

Wang  J., Li  N., Huang  Z.-B., Fu  S., Yu  S.-M., Fu  Y.-M., Zhou  P.-C., Chen  R.-C., Zhou  R.-R., Huang  Y.  et al. .  HBx regulates transcription factor PAX8 stabilization to promote the progression of hepatocellular carcinoma. Oncogene. 2019; 38:6696–6710. PubMed

Li  Y., Fu  Y., Hu  X., Sun  L., Tang  D., Li  N., Peng  F., Fan  X.  The HBx–CTTN interaction promotes cell proliferation and migration of hepatocellular carcinoma via CREB1. Cell Death Dis.  2019; 10:405. PubMed PMC

Salerno  D., Chiodo  L., Alfano  V., Floriot  O., Cottone  G., Paturel  A., Pallocca  M., Plissonnier  M.-L., Jeddari  S., Belloni  L.  et al. .  Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut. 2020; 69:2016–2024. PubMed PMC

Tao  Y., Wu  D., Zhou  L., Chen  E., Liu  C., Tang  X., Jiang  W., Han  N., Li  H., Tang  H.. Tang  H.  Present and future therapies for chronic hepatitis B. Hepatitis B Virus Infection: Molecular Virology to Antiviral Drugs. 2020; Singapore: Springer Singapore; 137–186. PubMed

Squires  K.E., Mayers  D.L., Bluemling  G.R., Kolykhalov  A.A., Guthrie  D.B., Reddy  P., Mitchell  D.G., Saindane  M.T., Sticher  Z.M., Edpuganti  V.  et al. .  ATI-2173, a novel liver-targeted non-chain-terminating nucleotide for hepatitis B virus cure regimens. Antimicrob. Agents Chemother.  2020; 64:e00836-20. PubMed PMC

Minor  M.M., Hollinger  F.B., McNees  A.L., Jung  S.Y., Jain  A., Hyser  J.M., Bissig  K.-D., Slagle  B.L.  Hepatitis B virus HBx protein mediates the degradation of host restriction factors through the cullin 4 DDB1 E3 ubiquitin ligase complex. Cells. 2020; 9:834. PubMed PMC

Sekiba  K., Otsuka  M., Koike  K.  Identifying inhibitors of the HBx–DDB1 interaction using a split luciferase assay system. J. Vis. Exp.  2019; e60652. PubMed

Montero  J., Letai  A.  Why do BCL-2 inhibitors work and where should we use them in the clinic?. Cell Death Differ.  2018; 25:56–64. PubMed PMC

Lohitesh  K., Chowdhury  R., Mukherjee  S.  Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int.  2018; 18:44. PubMed PMC

Dang  C.V., Reddy  E.P., Shokat  K.M., Soucek  L.  Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer. 2017; 17:502–508. PubMed PMC

Yoshida  M., Miyoshi  I., Hinuma  Y.  Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc. Natl Acad. Sci. U.S.A.  1982; 79:2031–2035. PubMed PMC

Poiesz  B.J., Ruscetti  F.W., Gazdar  A.F., Bunn  P.A., Minna  J.D., Gallo  R.C.  Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl Acad. Sci. U.S.A.  1980; 77:7415–7419. PubMed PMC

Gessain  A., Gessain  A., Cassar  O.  Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol.  2012; 3:388. PubMed PMC

Taylor  G.P., Matsuoka  M.  Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene. 2005; 24:6047–6057. PubMed

Ishitsuka  K., Tamura  K.  Human T-cell leukaemia virus type I and adult T-cell leukaemia–lymphoma. Lancet Oncol.  2014; 15:e517–e526. PubMed

Rajabalendaran  N., Burns  R., Mollison  L.C., Blessing  W., Kirubakaran  M.G., Lindschau  P.  Tropical spastic paraparesis in an aborigine. Med. J. Aust.  1993; 159:28–29. PubMed

Mochizuki  M., Ono  A., Ikeda  E., Hikita  N., Watanabe  T., Yamaguchi  K., Sagawa  K., Ito  K.  HTLV-I uveitis. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.  1996; 13(Suppl.1):S50–S56. PubMed

McGill  N.-K., Vyas  J., Shimauchi  T., Tokura  Y., Piguet  V.  HTLV-1-associated infective dermatitis: updates on the pathogenesis. Exp. Dermatol.  2012; 21:815–821. PubMed

Douen  A.G., Pringle  C.E., Guberman  A.  Human T-cell lymphotropic virus type 1 myositis, peripheral neuropathy, and cerebral white matter lesions in the absence of spastic paraparesis. Arch. Neurol.  1997; 54:896–900. PubMed

Eguchi  K., Nakamura  T., Mine  M., Ida  H., Kawakami  A., Migita  K., Nagasato  K., Kurata  A., Fukuda  T., Nagataki  S.  HTLV-I associated arthritis: characteristics of an HTLV-I virus infected T cell line from synovial fluid. Ann. Rheum. Dis.  1992; 51:673–677. PubMed PMC

Einsiedel  L., Fernandes  L., Spelman  T., Steinfort  D., Gotuzzo  E.  Bronchiectasis is associated with human T-lymphotropic virus 1 infection in an indigenous Australian population. Clin. Infect. Dis.  2011; 54:43–50. PubMed

Shimoyama  M.  Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia–lymphoma. Br. J. Haematol.  1991; 79:428–437. PubMed

Katsuya  H., Ishitsuka  K., Utsunomiya  A., Hanada  S., Eto  T., Moriuchi  Y., Saburi  Y., Miyahara  M., Sueoka  E., Uike  N.  et al. .  Treatment and survival among 1594 patients with ATL. Blood. 2015; 126:2570–2577. PubMed

Tsuji  Y., Doi  H., Yamabe  T., Ishimaru  T., Miyamoto  T., Hino  S.  Prevention of mother-to-child transmission of human T-lymphotropic virus type-I. Pediatrics. 1990; 86:11–17. PubMed

Paiva  A.P., Casseb  J.C.  Sexual transmission of human T-cell lymphotropic virus type 1. Rev. Soc. Bras. Med. Trop.  2014; 47:265–274. PubMed

Okochi  K., Sato  H., Hinuma  Y.  A retrospective study on transmission of adult T cell leukemia virus by blood transfusion: seroconversion in recipients. Vox Sang.  1984; 46:245–253. PubMed

Feigal  E., Murphy  E., Vranizan  K., Bacchetti  P., Chaisson  R., Drummond  J.E., Blattner  W., McGrath  M., Greenspan  J., Moss  A.  Human T cell lymphotropic virus types I and II in intravenous drug users in San Francisco: risk factors associated with seropositivity. J. Infect. Dis.  1991; 164:36–42. PubMed

Igakura  T., Stinchcombe  J.C., Goon  P.K.C., Taylor  G.P., Weber  J.N., Griffiths  G.M., Tanaka  Y., Osame  M., Bangham  C.R.M.  Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science. 2003; 299:1713–1716. PubMed

Hirons  A., Khoury  G., Purcell  D.F.J.  Human T-cell lymphotropic virus type-1: a lifelong persistent infection, yet never truly silent. Lancet Infect. Dis.  2021; 21:e2–e10. PubMed

Unge  T., Solomin  L., Mellini  M., Derse  D., Felber  B.K., Pavlakis  G.N.  The Rex regulatory protein of human T-cell lymphotropic virus type I binds specifically to its target site within the viral RNA. Proc. Natl Acad. Sci. U.S.A.  1991; 88:7145–7149. PubMed PMC

D’Agostino  D.M., Cavallari  I., Romanelli  M.G., Ciminale  V.  Post-transcriptional regulation of HTLV gene expression: Rex to the rescue. Front. Microbiol.  2019; 10:1958. PubMed PMC

Nicot  C., Bai  X.T.  Overview on HTLV-1 p12, p8, p30, p13: accomplices in persistent infection and viral pathogenesis. Front.Microbiol.  2012; 3:400. PubMed PMC

Matsuoka  M., Mesnard  J.-M.  HTLV-1 bZIP factor: the key viral gene for pathogenesis. Retrovirology. 2020; 17:2. PubMed PMC

Futsch  N., Mahieux  R., Dutartre  H.  HTLV-1, the other pathogenic yet neglected human retrovirus: from transmission to therapeutic treatment. Viruses. 2018; 10:1. PubMed PMC

Currer  R., Van Duyne  R., Jaworski  E., Guendel  I., Sampey  G., Das  R., Narayanan  A., Kashanchi  F.  HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front. Microbiol.  2012; 3:406. PubMed PMC

Mohanty  S., Harhaj  E.W.  Mechanisms of oncogenesis by HTLV-1 Tax. Pathogens. 2020; 9:543. PubMed PMC

Matsumoto  K., Shibata  H., Fujisawa  J.I., Inoue  H., Hakura  A., Tsukahara  T., Fujii  M.  Human T-cell leukemia virus type 1 Tax protein transforms rat fibroblasts via two distinct pathways. J. Virol.  1997; 71:4445–4451. PubMed PMC

Hasegawa  H., Sawa  H., Lewis  M.J., Orba  Y., Sheehy  N., Yamamoto  Y., Ichinohe  T., Tsunetsugu-Yokota  Y., Katano  H., Takahashi  H.  et al. .  Thymus-derived leukemia–lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat. Med.  2006; 12:466–472. PubMed

Bellon  M., Baydoun  H.H., Yao  Y., Nicot  C.  HTLV-I Tax-dependent and -independent events associated with immortalization of human primary T lymphocytes. Blood. 2010; 115:2441–2448. PubMed PMC

Fochi  S., Mutascio  S., Bertazzoni  U., Zipeto  D., Romanelli  M.G.  HTLV deregulation of the NF-κB pathway: an update on Tax and antisense proteins role. Front. Microbiol.  2018; 9:285. PubMed PMC

Vandermeulen  C., O’Grady  T., Wayet  J., Galvan  B., Maseko  S., Cherkaoui  M., Desbuleux  A., Coppin  G., Olivet  J., Ben Ameur  L.  et al. .  The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathog.  2021; 17:e1009919. PubMed PMC

Clerc  I., Polakowski  N., André-Arpin  C., Cook  P., Barbeau  B., Mesnard  J.-M., Lemasson  I.  An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of Tax-dependent viral transcription by HBZ. J. Biol. Chem.  2008; 283:23903–23913. PubMed PMC

Wurm  T., Wright  D.G., Polakowski  N., Mesnard  J.-M., Lemasson  I.  The HTLV-1-encoded protein HBZ directly inhibits the acetyl transferase activity of p300/CBP. Nucleic Acids Res.  2012; 40:5910–5925. PubMed PMC

Wright  D.G., Marchal  C., Hoang  K., Ankney  J.A., Nguyen  S.T., Rushing  A.W., Polakowski  N., Miotto  B., Lemasson  I.  Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget. 2016; 7:1687–1706. PubMed PMC

Gazon  H., Lemasson  I., Polakowski  N., Césaire  R., Matsuoka  M., Barbeau  B., Mesnard  J.-M., Peloponese  J.-M.  Human T-cell leukemia virus type 1 (HTLV-1) bZIP factor requires cellular transcription factor JunD to upregulate HTLV-1 antisense transcription from the 3′ long terminal repeat. J. Virol.  2012; 86:9070–9078. PubMed PMC

Kuhlmann  A.-S., Villaudy  J., Gazzolo  L., Castellazzi  M., Mesnard  J.-M., Duc Dodon  M.  HTLV-1 HBZ cooperates with JunD to enhance transcription of the human telomerase reverse transcriptase gene (hTERT). Retrovirology. 2007; 4:92. PubMed PMC

Rushing  A.W., Rushing  B., Hoang  K., Sanders  S.V., Péloponèse  J.-M.  Jr, Polakowski  N., Lemasson  I.  HTLV-1 basic leucine zipper factor protects cells from oxidative stress by upregulating expression of heme oxygenase I. PLoS Pathog.  2019; 15:e1007922. PubMed PMC

Zhao  T., Yasunaga  J.-I., Satou  Y., Nakao  M., Takahashi  M., Fujii  M., Matsuoka  M.  Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-κB. Blood. 2009; 113:2755–2764. PubMed

Ma  Y., Zhang  B., Wang  D., Qian  L., Song  X., Wang  X., Yang  C., Zhao  G.  HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB. Int. J. Mol. Med.  2017; 39:764–770. PubMed

Mitobe  Y., Yasunaga  J.-I., Furuta  R., Matsuoka  M.  HTLV-1 bZIP factor RNA and protein impart distinct functions on T-cell proliferation and survival. Cancer Res.  2015; 75:4143–4152. PubMed

Ishida  T., Hishizawa  M., Kato  K., Tanosaki  R., Fukuda  T., Taniguchi  S., Eto  T., Takatsuka  Y., Miyazaki  Y., Moriuchi  Y.  et al. .  Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia–lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood. 2012; 120:1734–1741. PubMed

Bazarbachi  A., Suarez  F., Fields  P., Hermine  O.  How I treat adult T-cell leukemia/lymphoma. Blood. 2011; 118:1736–1745. PubMed

Narita  T., Ishida  T., Ito  A., Masaki  A., Kinoshita  S., Suzuki  S., Takino  H., Yoshida  T., Ri  M., Kusumoto  S.  et al. .  Cyclin-dependent kinase 9 is a novel specific molecular target in adult T-cell leukemia/lymphoma. Blood. 2017; 130:1114–1124. PubMed

Dassouki  Z., Sahin  U., El Hajj  H., Jollivet  F., Kfoury  Y., Lallemand-Breitenbach  V., Hermine  O., de Thé  H., Bazarbachi  A.  ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation. Blood. 2015; 125:474–482. PubMed

Tsukasaki  K., Marçais  A., Nasr  R., Kato  K., Fukuda  T., Hermine  O., Bazarbachi  A.  Diagnostic approaches and established treatments for adult T cell leukemia/lymphoma. Front. Microbiol.  2020; 11:1207. PubMed PMC

Rizkallah  G., Mahieux  R., Dutartre  H.  Clinical approaches of HIV-1/HTLV-1 co-infection still keep their mysteries. J. Infectol.  2019; 2:25–31.

Marino-Merlo  F., Balestrieri  E., Matteucci  C., Mastino  A., Grelli  S., Macchi  B.  Antiretroviral therapy in HTLV-1 infection: an updated overview. Pathogens. 2020; 9:342. PubMed PMC

Soltani  A., Hashemy  S.I., Zahedi Avval  F., Soleimani  A., Rafatpanah  H., Rezaee  S.A., Griffith  R., Mashkani  B.  Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed. Pharmacother.  2019; 109:770–778. PubMed

Raza  M.T., Mizan  S., Yasmin  F., Akash  A.-S., Shahik  S.M.  Epitope-based universal vaccine for human T-lymphotropic virus-1 (HTLV-1). PLoS One. 2021; 16:e0248001. PubMed PMC

Matsuoka  M., Green  P.L.  The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology. 2009; 6:71. PubMed PMC

Yasunaga  J.-I.  Strategies of human T-cell leukemia virus type 1 for persistent infection: implications for leukemogenesis of adult T-cell leukemia–lymphoma. Front. Microbiol.  2020; 11:979. PubMed PMC

Ma  G., Yasunaga  J., Matsuoka  M.  Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology. 2016; 13:16. PubMed PMC

Gazon  H., Chauhan  P.S., Porquet  F., Hoffmann  G.B., Accolla  R., Willems  L.  Epigenetic silencing of HTLV-1 expression by the HBZ RNA through interference with the basal transcription machinery. Blood Adv.  2020; 4:5574–5579. PubMed PMC

Epstein  M.A., Achong  B.G., Barr  Y.M.  Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet North Am. Ed.  1964; 283:702–703. PubMed

Baer  R., Bankier  A.T., Biggin  M.D., Deininger  P.L., Farrell  P.J., Gibson  T.J., Hatfull  G., Hudson  G.S., Satchwell  S.C., Séguin  C.  et al. .  DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature. 1984; 310:207–211. PubMed

Williams  H., Crawford  D.H.  Epstein–Barr virus: the impact of scientific advances on clinical practice. Blood. 2006; 107:862–869. PubMed

Rezk  S.A., Zhao  X., Weiss  L.M.  Epstein–Barr virus (EBV)-associated lymphoid proliferations, a 2018 update. Hum. Pathol.  2018; 79:18–41. PubMed

Khan  G., Fitzmaurice  C., Naghavi  M., Ahmed  L.A.  Global and regional incidence, mortality and disability-adjusted life-years for Epstein–Barr virus-attributable malignancies, 1990–2017. BMJ Open. 2020; 10:e037505. PubMed PMC

Ascherio  A., Munger  K.L.  Epidemiology of multiple sclerosis: from risk factors to prevention – an update. Semin. Neurol.  2016; 36:103–114. PubMed

Khanna  R., Moss  D., Gandhi  M.  Technology insight: applications of emerging immunotherapeutic strategies for Epstein–Barr virus-associated malignancies. Nat. Clin. Pract. Oncol.  2005; 2:138–149. PubMed

Ayee  R., Ofori  M.E.O., Wright  E., Quaye  O.  Epstein Barr virus associated lymphomas and epithelia cancers in humans. J. Cancer. 2020; 11:1737–1750. PubMed PMC

Long  X., Yang  Z., Li  Y., Sun  Q., Li  X., Kuang  E.  BRLF1-dependent viral and cellular transcriptomes and transcriptional regulation during EBV primary infection in B lymphoma cells. Genomics. 113:2591–2604. PubMed

Schwemmle  M., Clemens  M.J., Hilse  K., Pfeifer  K., Tröster  H., Müller  W.E., Bachmann  M.  Localization of Epstein–Barr virus-encoded RNAs EBER-1 and EBER-2 in interphase and mitotic Burkitt lymphoma cells. Proc. Natl Acad. Sci. U.S.A.  1992; 89:10292–10296. PubMed PMC

Gulley  M.L.  Molecular diagnosis of Epstein–Barr virus-related diseases. J. Mol. Diagn.  2001; 3:1–10. PubMed PMC

Li  H., Liu  S., Hu  J., Luo  X., Li  N., M.Bode  A., Cao  Y.  Epstein–Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int. J. Biol. Sci.  2016; 12:1309–1318. PubMed PMC

Chevallier-Greco  A., Manet  E., Chavrier  P., Mosnier  C., Daillie  J., Sergeant  A.  Both Epstein–Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J.  1986; 5:3243–3249. PubMed PMC

Feederle  R., Kost  M., Baumann  M., Janz  A., Drouet  E., Hammerschmidt  W., Delecluse  H.-J.  The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J.  2000; 19:3080–3089. PubMed PMC

Chen  Y.L., Chen  Y.J., Tsai  W.H., Ko  Y.C., Chen  J.Y., Lin  S.F.  The Epstein–Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells. Cell Cycle. 2009; 8:58–65. PubMed

Bhende  P.M., Seaman  W.T., Delecluse  H.-J., Kenney  S.C.  BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J. Virol.  2005; 79:7338–7348. PubMed PMC

Adamson  A.L., Kenney  S.C.  Rescue of the Epstein–Barr virus BZLF1 mutant, Z(S186A), early gene activation defect by the BRLF1 gene product. Virology. 1998; 251:187–197. PubMed

Weber  E., Buzovetsky  O., Heston  L., Yu  K.-P., Knecht  K.M., El-Guindy  A., Miller  G., Xiong  Y., Sandri-Goldin  R.M.  A noncanonical basic motif of Epstein–Barr virus ZEBRA protein facilitates recognition of methylated DNA, high-affinity DNA binding, and lytic activation. J. Virol.  2019; 93:e00724-19. PubMed PMC

Mahot  S., Fender  P., Vivès  R.R., Caron  C., Perrissin  M., Gruffat  H., Sergeant  A., Drouet  E.  Cellular uptake of the EBV transcription factor EB1/Zta. Virus Res.  2005; 110:187–193. PubMed

Rothe  R., Liguori  L., Villegas-Mendez  A., Marques  B., Grunwald  D., Drouet  E., Lenormand  J.-L.  Characterization of the cell-penetrating properties of the Epstein–Barr virus ZEBRA trans-activator. J. Biol. Chem.  2010; 285:20224–20233. PubMed PMC

Paulson  E.J., Speck  S.H.  Differential methylation of Epstein–Barr virus latency promoters facilitates viral persistence in healthy seropositive individuals. J. Virol.  1999; 73:9959–9968. PubMed PMC

Hong  S., Wang  D., Horton  J.R., Zhang  X., Speck  S.H., Blumenthal  R.M., Cheng  X.  Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein–Barr virus Zta. Nucleic Acids Res.  2017; 45:2503–2515. PubMed PMC

Tillo  D., Ray  S., Syed  K.-S., Gaylor  M.R., He  X., Wang  J., Assad  N., Durell  S.R., Porollo  A., Weirauch  M.T.  et al. .  The Epstein–Barr virus B-ZIP protein Zta recognizes specific DNA sequences containing 5-methylcytosine and 5-hydroxymethylcytosine. Biochemistry. 2017; 56:6200–6210. PubMed PMC

Germini  D., Sall  F.B., Shmakova  A., Wiels  J., Dokudovskaya  S., Drouet  E., Vassetzky  Y.  Oncogenic properties of the EBV ZEBRA protein. Cancers. 2020; 12:1479. PubMed PMC

Chang  L.-K., Liu  S.-T.  Activation of the BRLF1 promoter and lytic cycle of Epstein–Barr virus by histone acetylation. Nucleic Acids Res.  2000; 28:3918–3925. PubMed PMC

Manet  E., Rigolet  A., Gruffat  H., Giot  J.-F., Sergeant  A.  Domains of the Epstein–Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res.  1991; 19:2661–2667. PubMed PMC

Ho  C.H., Hsu  C.F., Fong  P.F., Tai  S.K., Hsieh  S.L., Chen  C.J.  Epstein–Barr virus transcription activator Rta upregulates decoy receptor 3 expression by binding to its promoter. J. Virol.  2007; 81:4837–4847. PubMed PMC

Chen  L.-W., Chang  P.-J., Delecluse  H.-J., Miller  G.  Marked variation in response of consensus binding elements for the Rta protein of Epstein–Barr virus. J. Virol.  2005; 79:9635–9650. PubMed PMC

Chang  L.-K., Chung  J.-Y., Hong  Y.-R., Ichimura  T., Nakao  M., Liu  S.-T.  Activation of Sp1-mediated transcription by Rta of Epstein–Barr virus via an interaction with MCAF1. Nucleic Acids Res.  2005; 33:6528–6539. PubMed PMC

Chang  L.-K., Chuang  J.-Y., Nakao  M., Liu  S.-T.  MCAF1 and synergistic activation of the transcription of Epstein–Barr virus lytic genes by Rta and Zta. Nucleic Acids Res.  2010; 38:4687–4700. PubMed PMC

Lin  T.-Y., Chu  Y.-Y., Yang  Y.-C., Hsu  S.-W., Liu  S.-T., Chang  L.-K.  MCAF1 and Rta-activated BZLF1 transcription in Epstein–Barr virus. PLoS One. 2014; 9:e90698. PubMed PMC

Huang  H.-H., Wang  W.-H., Feng  T.-H., Chang  L.-K.  Rta is an Epstein–Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochem. Biophys. Res. Commun.  2020; 523:773–779. PubMed

Hwang  S.-P., Huang  L.-C., Wang  W.-H., Lin  M.-H., Kuo  C.-W., Huang  H.-H., Chang  L.-K.  Expression of Rta in B lymphocytes during Epstein–Barr virus latency. J. Mol. Biol.  2020; 432:5227–5243. PubMed

Jha  H.C., Pei  Y., Robertson  E.S.  Epstein–Barr virus: diseases linked to infection and transformation. Front.Microbiol.  2016; 7:1602. PubMed PMC

El-Sharkawy  A., Al Zaidan  L., Malki  A.  Epstein–Barr virus-associated malignancies: roles of viral oncoproteins in carcinogenesis. Front. Oncol.  2018; 8:265. PubMed PMC

Münz  C.  Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nat. Rev. Microbiol.  2019; 17:691–700. PubMed

Saha  A., Robertson  E.S., Goodrum  F.  Mechanisms of B-cell oncogenesis induced by Epstein–Barr virus. J. Virol.  2019; 93:e00238-19. PubMed PMC

Messahel  B., Taj  M.M., Hobson  R., Hadzic  N., Ramsay  A., Hann  I., Pinkerton  R.  Single agent efficacy of rituximab in childhood immunosuppression related lymphoproliferative disease: a United Kingdom Children’s Cancer Study Group (UKCCSG) retrospective review. Leuk. Lymphoma. 2006; 47:2584–2589. PubMed

Vickers  M.A., Wilkie  G.M., Robinson  N., Rivera  N., Haque  T., Crawford  D.H., Barry  J., Fraser  N., Turner  D.M., Robertson  V.  et al. .  Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein–Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br. J. Haematol.  2014; 167:402–410. PubMed PMC

Cao  Y.  EBV based cancer prevention and therapy in nasopharyngeal carcinoma. npj Precis. Oncol.  2017; 1:10. PubMed PMC

Lu  J., Tang  M., Li  H., Xu  Z., Weng  X., Li  J., Yu  X., Zhao  L., Liu  H., Hu  Y.  et al. .  EBV-LMP1 suppresses the DNA damage response through DNA-PK/AMPK signaling to promote radioresistance in nasopharyngeal carcinoma. Cancer Lett.  2016; 380:191–200. PubMed

Lin  J.C., DeClercq  E., Pagano  J.S.  Novel acyclic adenosine analogs inhibit Epstein–Barr virus replication. Antimicrob. Agents Chemother.  1987; 31:1431–1433. PubMed PMC

Meng  Q., Hagemeier  S.R., Fingeroth  J.D., Gershburg  E., Pagano  J.S., Kenney  S.C.  The Epstein–Barr virus (EBV)-encoded protein kinase, EBV-PK, but not the thymidine kinase (EBV-TK), is required for ganciclovir and acyclovir inhibition of lytic viral production. J. Virol.  2010; 84:4534–4542. PubMed PMC

Feng  W.-h., Westphal  E., Mauser  A., Raab-Traub  N., Gulley  M.L., Busson  P., Kenney  S.C.  Use of adenovirus vectors expressing Epstein–Barr virus (EBV) immediate-early protein BZLF1 or BRLF1 to treat EBV-positive tumors. J. Virol.  2002; 76:10951–10959. PubMed PMC

Feng  W.-h., Hong  G., Delecluse  H.-J., Kenney  S.C.  Lytic induction therapy for Epstein–Barr virus-positive B-cell lymphomas. J. Virol.  2004; 78:1893–1902. PubMed PMC

Moore  S.M., Cannon  J.S., Tanhehco  Y.C., Hamzeh  F.M., Ambinder  R.F.  Induction of Epstein–Barr virus kinases to sensitize tumor cells to nucleoside analogues. Antimicrob. Agents Chemother.  2001; 45:2082–2091. PubMed PMC

Drouet  E. Thomasini  R.L.  The role of the Epstein–Barr virus lytic cycle in tumor progression: consequences in diagnosis and therapy. Human Herpesvirus Infection:Biological Features, Transmission, Symptoms, Diagnosis and Treatment. 2019; London: IntechOpen.

Bilger  A., Plowshay  J., Ma  S., Nawandar  D., Barlow  E.A., Romero-Masters  J.C., Bristol  J.A., Li  Z., Tsai  M.-H., Delecluse  H.-J.  et al. .  Leflunomide/teriflunomide inhibit Epstein–Barr virus (EBV)-induced lymphoproliferative disease and lytic viral replication. Oncotarget. 2017; 8:44266–44280. PubMed PMC

Emery  V.C.  Human herpesvirus vaccines and future directions. Am. J. Transplant.  2013; 13:79–86. PubMed

Balfour  H.H., Schmeling  D.O., Grimm-Geris  J.M  The promise of a prophylactic Epstein–Barr virus vaccine. Pediatr. Res.  2020; 87:345–352. PubMed PMC

Nature Publishing Group  Drug delivery. Nat. Biotechnol.  2021; 39:1344. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...