Total Failure of Fenbendazole to Control Strongylid Infections in Czech Horse Operations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35265696
PubMed Central
PMC8899116
DOI
10.3389/fvets.2022.833204
Knihovny.cz E-zdroje
- Klíčová slova
- Mini-FLOTAC, anthelmintic drug, anthelmintic resistance, equine strongyles, fecal egg count reduction test,
- Publikační typ
- časopisecké články MeSH
The control of strongylid infections has become challenging globally for equine practitioners due to the development of anthelmintic resistance. Comprehensive information on anthelmintic resistance in the Czech Republic, however, is still lacking. This study monitored the current efficacy of fenbendazole, pyrantel embonate, ivermectin and moxidectin. Forty-eight of 71 operations met the criteria (≥6 horses with ≥200 eggs per gram), with 969 fecal egg count reduction tests performed. Anthelmintic resistance was evaluated on an operation level based on fecal egg count reduction (FECR) and the lower limit of the 95% credible interval (LLCI) using Bayesian hierarchical models. General anthelmintic efficacy across all operations was assessed by posterior FECRs and the occurrence of sub-zero efficacies. Ivermectin and moxidectin demonstrated excellent efficacy (FECR 99.8-100%; 99.4-100 LLCI) in 45 and 23 operations, respectively, pyrantel embonate demonstrated sufficient efficacy in 15 operations and resistance was suspected in seven operations (FECR 88.1-99.1%; 72.5-98.5 LLCI). Fenbendazole, however, was not effective in a single operation (FECR 19.1-77.8%; 8.1-50.1 LLCI) out of 18. Fenbendazole had the highest probability of sub-zero efficacy (29.1%), i.e., post-treatment fecal egg counts exceeded the pre-treatment counts. Our data indicate an increase in the development of anthelmintic resistance, resulting in total failure of fenbendazole and a reduced efficacy of pyrantel embonate. Introducing advanced approaches of parasite control in the Czech Republic to slow the spread of anthelmintic resistance is thus needed.
Department of Zoology and Fisheries Czech University of Life Sciences Prague Prague Czechia
Institute of Parasitology Slovak Academy of Sciences Košice Slovakia
Zobrazit více v PubMed
Matthews JB. Anthelmintic resistance in equine nematodes. Int J Parasitol Drugs Drug Resist. (2014) 4:310–5. 10.1016/j.ijpddr.2014.10.003 PubMed DOI PMC
Love S, Murphy D, Mellor D. Pathogenicity of cyathostome infection. Vet Parasitol. (1999) 85:113–22. 10.1016/S0304-4017(99)00092-8 PubMed DOI
Raza A, Qamar AG, Hayat K, Ashraf S, Williams AR. Anthelmintic resistance and novel control options in equine gastrointestinal nematodes. Parasitology. (2019) 146:425–37. 10.1017/S0031182018001786 PubMed DOI
Köhler P. The biochemical basis of anthelmintic action and resistance. Int J Parasitol. (2001) 31:336–45. 10.1016/S0020-7519(01)00131-X PubMed DOI
Craven J, Bjørn H, Barnes EH, Henriksen SA, Nansen P. A comparison of in vitro tests and a faecal egg count reduction test in detecting anthelmintic resistance in horse strongyles. Vet Parasitol. (1999) 85:49–59. 10.1016/S0304-4017(99)00113-2 PubMed DOI
Várady M, Königová A, Corba J. Benzimidazole resistance in equine cyathostomes in Slovakia. Vet Parasitol. (2000) 94:67–74. 10.1016/S0304-4017(00)00366-6 PubMed DOI
Lind EO, Kuzmina T, Uggla A, Waller PJ, Höglund J. A field study on the effect of some anthelmintics on cyathostomins of horses in Sweden. Vet Res Commun. (2007) 31:53–65. 10.1007/s11259-006-3402-5 PubMed DOI
Traversa D, von Samson-Himmelstjerna G, Demeler J, Milillo P, Schürmann S, Barnes H, et al. . Anthelmintic resistance in cyathostomin populations from horse yards in Italy, United Kingdom and Germany. Parasit Vectors. (2009) 2:1–7. 10.1186/1756-3305-2-S2-I1 PubMed DOI PMC
Traversa D, Castagna G, von Samson-Himmelstjerna G, Meloni S, Bartolini R, Geurden T, et al. . Efficacy of major anthelmintics against horse cyathostomins in France. Vet Parasitol. (2012) 188:294–300. 10.1016/j.vetpar.2012.03.048 PubMed DOI
Lester HE, Spanton J, Stratford CH, Bartley DJ, Morgan ER, Hodgkinson JE, et al. . Anthelmintic efficacy against cyathostomins in horses in Southern England. Vet Parasitol. (2013) 197:189–96. 10.1016/j.vetpar.2013.06.009 PubMed DOI
Relf VE, Lester HE, Morgan ER, Hodgkinson JE, Matthews JB. Anthelmintic efficacy on UK Thoroughbred stud farms. Int J Parasitol. (2014) 44:507–14. 10.1016/j.ijpara.2014.03.006 PubMed DOI
Stratford CH, Lester HE, Pickles KJ, McGorum BC, Matthews JB. An investigation of anthelmintic efficacy against strongyles on equine yards in Scotland. Equine Vet J. (2014) 46:17–24. 10.1111/evj.12079 PubMed DOI
Tarigo-Martinie JL, Wyatt AR, Kaplan RM. Prevalence and clinical implications of anthelmintic resistance in cyathostomes of horses. J Am Vet Med Assoc. (2001) 218:1957–60. 10.2460/javma.2001.218.1957 PubMed DOI
Rossano MG, Smith AR, Lyons ET. Shortened strongyle-type egg reappearance periods in naturally infected horses treated with moxidectin and failure of a larvicidal dose of fenbendazole to reduce fecal egg counts. Vet Parasitol. (2010) 173:349–52. 10.1016/j.vetpar.2010.07.001 PubMed DOI
Bellaw JL, Krebs K, Reinemeyer CR, Norris JK, Scare JA, Pagano S, et al. . Anthelmintic therapy of equine cyathostomin nematodes – Larvicidal efficacy, egg reappearance period, and drug resistance. Int J Parasitol. (2018) 48:97–105. 10.1016/j.ijpara.2017.08.009 PubMed DOI
von Witzendorff C, Quintana I, Sievers G, Schnieder T, von Samson-Himmelstjerna G. Estudio sobre resistencia frente a los bencimidazoles de pequeños estróngilos (Cyathostominae) del equino en el sur de Chile. Arch Med Vet. (2003) 35:187–94. 10.4067/S0301-732X2003000200006 DOI
Salas-Romero J, Gómez-Cabrera KA, Salas JE, Vázquez R, Arenal A, Nielsen MK. First report of anthelmintic resistance of equine cyathostomins in Cuba. Vet Parasitol Reg Stud Reports. (2018) 13:220–3. 10.1016/j.vprsr.2018.07.005 PubMed DOI
Canever RJ, Braga PR, Boeckh A, Grycajuck M, Bier D, Molento MB. Lack of Cyathostomin sp. reduction after anthelmintic treatment in horses in Brazil. Vet Parasitol. (2013) 194:35–9. 10.1016/j.vetpar.2012.12.020 PubMed DOI
Vera JHS, Fachiolli DF, Ramires LM, Saes LI, Yamada PH, Gonçalves JA, et al. . Eficacy of ivermectin, moxidectin and febendazole in equine in Brazil. Vet Parasitol Reg Stud Reports. (2020) 20:100374. 10.1016/j.vprsr.2020.100374 PubMed DOI
Chapman MR, French DD, Monahan CM, Klei TR. Identification and characterization of a pyrantel pamoate resistant cyathostome population. Vet Parasitol. (1996) 66:205–12. 10.1016/S0304-4017(96)01014-X PubMed DOI
Slocombe JOD, de Gannes RV. Cyathostomes in horses in Canada resistant to pyrantel salts and effectively removed by moxidectin. Vet Parasitol. (2006) 140:181–4. 10.1016/j.vetpar.2006.03.019 PubMed DOI
Näreaho A, Vainio K, Oksanen A. Impaired efficacy of ivermectin against Parascaris equorum, and both ivermectin and pyrantel against strongyle infections in trotter foals in Finland. Vet Parasitol. (2011) 182:372–7. 10.1016/j.vetpar.2011.05.045 PubMed DOI
Dauparaite E, Kupčinskas T, von Samson-Himmelstjerna G, Petkevičius S. Anthelmintic resistance of horse strongyle nematodes to ivermectin and pyrantel in Lithuania. Acta Vet Scand. (2021) 63:1–7. 10.1186/s13028-021-00569-z PubMed DOI PMC
von Samson-Himmelstjerna G, Fritzen B, Demeler J, Schürmann S, Rohn K, Schnieder T, et al. . Cases of reduced cyathostomin egg-reappearance period and failure of Parascaris equorum egg count reduction following ivermectin treatment as well as survey on pyrantel efficacy on German horse farms. Vet Parasitol. (2007) 144:74–80. 10.1016/j.vetpar.2006.09.036 PubMed DOI
Lyons ET, Tolliver SC, Ionita M, Lewellen A, Collins SS. Field studies indicating reduced activity of ivermectin on small strongyles in horses on a farm in Central Kentucky. Parasitol Res. (2008) 103:209–15. 10.1007/s00436-008-0959-7 PubMed DOI
Daniels SP, Proudman CJ. Shortened egg reappearance after ivermectin or moxidectin use in horses in the UK. Vet J. (2016) 218:36–9. 10.1016/j.tvjl.2016.11.003 PubMed DOI
Chroust K. Occurrence of anthelmintic resistance in strongylid nematodes of sheep and horses in the Czech Republic. Vet Med. (2000) 45:233–9.
Langrová I, Borovský M, Jankovská I, Navrátil J, Slavík V. The benzimidazole resistance of cyathostomes on five horse farms in the Czech Republic. Helminthologia. (2002) 39:211–6.
Bodeček Š, Vavrouchová E. Monitoring of anthelmintic resistance in small strongyles in the Czech Republic in the years 2006–2009. Acta Vet Brno. (2013) 82:243–8. 10.2754/avb201382030243 DOI
Bodeček S, Světlíková J, Hargitaiová K, Kecerová Z, Mráčková M. Monitoring the avermectin and pyrantel resistance status of nematode parasites of horses in the Czech Republic. Vet Med. (2018) 63:299–305. 10.17221/125/2017-VETMED DOI
Coles GC, Jackson F, Pomroy WE, Prichard RK, von Samson-Himmelstjerna G, Silvestre A, et al. . The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. (2006) 136:167–85. 10.1016/j.vetpar.2005.11.019 PubMed DOI
ESCCAP . A Guide to the Treatment and Control of Equine Gastrointestinal Parasite Infections. (2019). Available online at: https://www.esccap.org/uploads/docs/70ep8j2z_0796_ESCCAP_Guideline_GL8_v8_1p.pdf (accessed October 20, 2021).
AAEP . AAEP Internal Parasite Control Guidelines. (2019). Available online at: https://aaep.org/sites/default/files/2021-03/Internal_Parasite_Guidelines.pdf (accessed October 20, 2021).
Barda BD, Rinaldi L, Ianniello D, Zepherine H, Salvo F, Sadutshang T, et al. . Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Negl Trop Dis. (2013) 7:e2344. 10.1371/journal.pntd.0002344 PubMed DOI PMC
Cringoli G, Maurelli MP, Levecke B, Bosco A, Vercruysse J, Utzinger J, et al. . The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat Protoc. (2017) 12:1723. 10.1038/nprot.2017.067 PubMed DOI
Cernea M, de Carvalho LM, Cozma V. Atlas of Diagnosis of Equine Strongylidosis. Cluj-Napoca: Editura Academic Press; (2008). p. 118.
Torgerson PR, Paul M, Furrer R. Evaluating faecal egg count reduction using a specifically designed package “eggCounts” in R and a user friendly web interface. Int J Parasitol. (2014) 44:299–303. 10.1016/j.ijpara.2014.01.005 PubMed DOI
Wang C, Torgerson PR, Kaplan RM, George MM, Furrer R. Modelling anthelmintic resistance by extending eggcounts package to allow individual efficacy. Int J Parasitol Drugs Drug Resist. (2018) 8:386–93. 10.1016/j.ijpddr.2018.07.003 PubMed DOI PMC
Levecke B, Kaplan RM, Thamsborg SM, Torgerson PR, Vercruysse J, Dobson RJ. How to improve the standardization and the diagnostic performance of the fecal egg count reduction test? Vet Parasitol. (2018) 253:71–8. 10.1016/j.vetpar.2018.02.004 PubMed DOI
Kaplan RM, Nielsen MK. An evidence-based approach to equine parasite control: it ain't the 60s anymore. Equine Vet Educ. (2010) 22:306–16. 10.1111/j.2042-3292.2010.00084.x DOI
Nápravníková J, Vadlejch J. The Distribution of Family Strongylidae Nematodes in Czech Horse Farms. 9th Workshop on Biodiversity, Jevany: (2017).
Nielsen MK, Banahan M, Kaplan RM. Importation of macrocyclic lactone resistant cyathostomins on a US thoroughbred farm. Int J Parasitol Drugs Drug Resist. (2020) 14:99–104. 10.1016/j.ijpddr.2020.09.004 PubMed DOI PMC
Milillo P, Boeckh A, Cobb R, Otranto D, Lia RP, Perrucci S, et al. . Faecal cyathostomin egg count distribution and efficacy of anthelmintics against cyathostomins in italy: a matter of geography? Parasit Vectors. (2009) 2:1–7. 10.1186/1756-3305-2-S2-S4 PubMed DOI PMC
Smith G, Grenfell BT, Isham V, Cornell S. Anthelmintic resistance revisited: under-dosing, chemoprophylactic strategies, and mating probabilities. Int J Parasitol. (1999) 29:77–91. 10.1016/S0020-7519(98)00186-6 PubMed DOI
Coles GC. The biochemical mode of action of some modern anthelmintics. Pestic Sci. (1977) 8:536–43. 10.1002/ps.2780080518 DOI
Nápravníková J, Petrtýl M, Stupka R, Vadlejch J. Reliability of three common fecal egg counting techniques for detecting strongylid and ascarid infections in horses. Vet Parasitol. (2019) 272:53–7. 10.1016/j.vetpar.2019.07.001 PubMed DOI