Sulfonyl Nitrene and Amidyl Radical: Structure and Reactivity

. 2022 May 16 ; 28 (28) : e202104493. [epub] 20220405

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35266598

Grantová podpora
740.018.022 Nederlandse Organisatie voor Wetenschappelijk Onderzoek
17-14510S Grantová Agentura České Republiky
682275 European Research Council - International

Photocatalytic generation of nitrenes and radicals can be used to tune or even control their reactivity. Photocatalytic activation of sulfonyl azides leads to the elimination of N2 and the resulting reactive species initiate C-H activations and amide formation reactions. Here, we present reactive radicals that are generated from sulfonyl azides: sulfonyl nitrene radical anion, sulfonyl nitrene and sulfonyl amidyl radical, and test their gas phase reactivity in C-H activation reactions. The sulfonyl nitrene radical anion is the least reactive and its reactivity is governed by the proton coupled electron transfer mechanism. In contrast, sulfonyl nitrene and sulfonyl amidyl radicals react via hydrogen atom transfer pathways. These reactivities and detailed characterization of the radicals with vibrational spectroscopy and with DFT calculations provide information necessary for taking control over the reactivity of these intermediates.

Zobrazit více v PubMed

For review of pioneer research see: Abramovitch R. A., Davis B. A., Chem. Rev. 1964, 64, 149–185.

Kuijpers P. F., van der Vlugt J. I., Schneider S., de Bruin B., Chem. Eur. J. 2017, 23, 13819–13829. PubMed PMC

For initial nonaflyl azide reactivity studies, please refer to:

Shi-zheng Z., Tetrahedron Lett. 1992, 33, 6503–6504;

Zhu S.-Z., J. Chem. Soc., Perkin Trans. 1 1994, 2077–2081.

Pioneer EPR studies:

Smolinsky G., Wasserman E., Yager W. A., J. Am. Chem. Soc. 1962, 84, 3220–3221;

Wasserman E., Smolinsky G., Yager W. A., J. Am. Chem. Soc. 1964, 86, 3166–3167;

Moriarty R. M., Rahman M., King G. J., J. Am. Chem. Soc. 1966, 88, 842–843;

Roberts B. P., Winter J. N., J. Chem. Soc., Perkin Trans. 2 1979, 1353–1361; Recent reviews on metalonitrenes:

Kuijpers P. F., van der Vlugt J. I., Schneider S., de Bruin B., Chem. Eur. J. 2017, 23, 13819–13829; PubMed PMC

Moegling J., Hoffmann A., Thomas F., Orth N., Liebhäuser P., Herber U., Rampmaier R., Stanek J., Fink G., Ivanović-Burmazović I., Herres-Pawlis S., Angew. Chem. Int. Ed. 2018, 57, 9154–9159; Gas-phase studies on metalonitrenes: PubMed

Fedorov A., Couzijn E. P. A., Nagornova N. S., Boyarkin O. V., Rizzo T. R., Chen P., J. Am. Chem. Soc. 2010, 132, 13789–13798; PubMed

Fedorov A., Batiste L., Couzijn E. P. A., Chen P., ChemPhysChem 2010, 11, 1002–1005. PubMed

Zeng X., Beckers H., Neuhaus P., Grote D., Sander W., Z. Anorg. Allg. Chem. 2012, 638, 526–533;

Deng G., Dong X., Liu Q., Li D., Li H., Sun Q., Zeng X., Phys. Chem. Chem. Phys. 2017, 19, 3792–3799; PubMed

Dong X., Deng G., Xu J., Li H., Zeng X., J. Phys. Chem. A 2018, 122, 8511–8519; PubMed

Yang Y., Chu X., Lu Y., Abe M., Zeng X., Molecules 2018, 23, 3312; PubMed PMC

Yang Y., Deng G., Lu Y., Liu Q., Abe M., Zeng X., J. Phys. Chem. A 2019, 123, 9311–9320. PubMed

Zeng X., Beckers H., Willner H., Neuhaus P., Grote D., Sander W., J. Phys. Chem. A 2015, 119, 2281–2288; PubMed

Kuzmin A. V., Neumann C., van Wilderen L. J. G. W., Shainyan B. A., Bredenbeck J., Phys. Chem. Chem. Phys. 2016, 18, 8662–8672. PubMed

Zeng X., Beckers H., Willner H., Neuhaus P., Grote D., Sander W., J. Phys. Chem. A 2015, 119, 2281–2288; PubMed

Kuzmin A. V., Neumann C., van Wilderen L. J. G. W., Shainyan B. A., Bredenbeck J., Phys. Chem. Chem. Phys. 2016, 18, 8662–8672. PubMed

Kubicki J., Luk H. L., Zhang Y., Vyas S., Peng H.-L., Hadad C. M., Platz M. S., J. Am. Chem. Soc. 2012, 134, 7036–7044. PubMed

For related in silico studies, please refer to:

Shainyan B. A., Kuzmin A. V., J. Phys. Org. Chem. 2014, 27, 527–531;

Kuzmin A. V., Shainyan B. A., J. Phys. Org. Chem. 2014, 27, 794–802;

Kuzmin A. V., Shainyan B. A., J. Mol. Struct. 2018, 1172, 8–16.

Hernández-Guerra D., Hlavačková A., Pramthaisong C., Vespoli I., Pohl R., Slanina T., Jahn U., Angew. Chem. Int. Ed. 2019, 58, 12440–12445. For recent related systems studies refer to: PubMed

Bagal D. B., Park S.-W., Song H.-J., Chang S., Chem. Commun. 2017, 53, 8798–8801; PubMed

Shu W., Nevado C., Angew. Chem. Int. Ed. 2017, 56, 1881–1884; PubMed

Jung H., Keum H., Kweon J., Chang S., J. Am. Chem. Soc. 2020, 142, 5811–5818. PubMed

Zhou S. F., Lv K., Fu R., Zhu C. L., Bao X. G., ACS Catal. 2021, 11, 5026-5034.

Such intermediate has been proposed in a similar photocatalytic system:

Guo Y., Pei C., Jana S., Koenigs R. M., ACS Catal. 2021, 11, 337–342; and in electrochemical systems:

Van Galen D. A., Barnes J. H., Hawley M. D., J. Org. Chem. 1986, 51, 2544–2550;

Herbranson D. E., Hawley M. D., J. Org. Chem. 1990, 55, 4297–4303.

Chen F. J., Huang X., Yang C., Jiang H. F., Zeng W., J. Org. Chem. 2021, 86, 14572-14585; PubMed

Guo Y., Pei C., Koenigs R. M., Nat. Commun. 2022, 13, 86. PubMed PMC

Armentrout P. B., Int. J. Mass Spectrom. 2000, 200, 219–241;

Armentrout P. B., J. Am. Soc. Mass Spectrom. 2002, 13, 419–434; PubMed

Chen P., Angew. Chem. Int. Ed. 2003, 42, 2832–2847; PubMed

Liu F., Zhang X.-G., Liyanage R., Armentrout P. B., J. Chem. Phys. 2004, 121, 10976; PubMed

Roithová J., Schröder D., Chem. Rev. 2010, 110, 1170–1211; PubMed

Schröder D., Acc. Chem. Res. 2012, 45, 1521–1532. PubMed

Bieske E. J., Dopfer O., Chem. Rev. 2000, 100, 3963–3998; PubMed

Oomens J., Sartakov B. G., Meijer G., Von Helden G., Int. J. Mass Spectrom. 2006, 254, 1–19;

MacAleese L., Maitre P., Mass Spectrom. Rev. 2007, 26, 583–605; PubMed

Roithova J., Chem. Soc. Rev. 2012, 41, 547–559; PubMed

Wolk A. B., Leavitt C. M., Garand E., Johnson M. A., Acc. Chem. Res. 2014, 47, 202–210; PubMed

Heine N., Asmis K. R., Int. Rev. Phys. Chem. 2015, 34, 1–34;

Rijs A. M., Oomens J., in Gas-Phase IR Spectroscopy and Structure of Biological Molecules, Springer International Publishing, Cham, 2015, pp. 1–42;

Roithova J., Gray A., Andris E., Jasik J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230; PubMed

Gerlich D., J. Chin. Chem. Soc. 2018, 65, 637–653;

Jasikova L., Roithova J., Chem. Eur. J. 2018, 24, 3374–3390; PubMed

Schwarz H., Asmis K. R., Chem. Eur. J. 2019, 25, 2112–2126; PubMed

Martens J., van Outersterp R. E., Vreeken R. J., Cuyckens F., Coene K. L. M., Engelke U. F., Kluijtmans L. A. J., Wevers R. A., Buydens L. M. C., Redlich B., Berden G., Oomens J., Anal. Chim. Acta 2020, 1093, 1–15. PubMed

In-liquid ionization (see Figure S4), for negative MS: sheat 14, aux 0 spray voltage 5.5 kV, capillary temperature 250 °C, Capillary voltage 0 V, Tube lens voltage −60 V; for positive MS: sheat 10, aux 0 spray voltage 5.5 kV, capillary temperature 250 °C, Capillary voltage 0 V, Tube lens voltage 50 V.

Sample irradiated for 5 minutes (see Figure S2). Then irradiation stopped and sample sprayed. The m/s pattern of the sample did not change in course of hours.

For recent review see: Zelenka J., Roithová J., ChemBioChem 2020, 21, 2232–2240. PubMed

For application of in-source CID please refer to (and citations therein):

Marquet P., Venisse N., Lacassie É., Lachâtre G., Analusis 2000, 28, 925–934;

Crellin K. C., Sible E., Van Antwerp J., Int. J. Mass Spectrom. 2003, 222, 281–311;

Andris E., Jašík J., Gómez L., Costas M., Roithová J., Angew. Chem. Int. Ed. 2016, 128, 3701–3705; PubMed PMC

Parcher J. F., Wang M., Chittiboyina A. G., Khan I. A., Drug Test. Anal. 2018, 10, 28–36. PubMed

The nomenclature of RN⋅- is unclear. Most of the reports use the term nitrene radical anion, which however is probably not correct. Alternatively, RN.− could be referred to as imidyl radical anion which is however almost absent in literature.

92 % of acetylacetone is in the enol-form in the gas phase at 25 °C. Conant J. B., Thompson A. F., J. Am. Chem. Soc. 1932, 54, 4039–4047. For thermal dependence see:

Briegleb G., Strohmeier W., Angew. Chem. 1952, 64, 409–417.

BDE=88.6±2 kcal/mol: Janousek B. K., Reed K. J., Brauman J. I., J. Am. Chem. Soc. 1980, 102, 3125–3129.

BDE=76.0±1.2 kcal/mol: Tsang W., J. Phys. Chem. 1986, 90, 1152–1155.

Andris E., Navrátil R., Jašík J., Puri M., Costas M., Que L., Roithová J., J. Am. Chem. Soc. 2018, 140, 14391–14400. PubMed

For handbook, refer to: Luo Y.-R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, 2007.

BDE=90.3 kcal/mol: Yoon M.-C., Choi Y. S., Kim S. K., J. Chem. Phys. 1999, 110, 11850–11855.

C−H in the keto form. Heat of enolization is 2.4±0.2 kcal/mol: Powling J., Bernstein H. J., J. Am. Chem. Soc. 1951, 73, 4353–4356.

ATcT value =96.32±0.23: B. Ruscic, D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network (2021); available at ATcT.anl.gov.

Ruscic B., Pinzon R. E., Morton M. L., von Laszevski G., Bittner S. J., Nijsure S. G., Amin K. A., Minkoff M., Wagner A. F., J. Phys. Chem. A 2004, 108, 9979–9997;

Ruscic B., Pinzon R. E., von Laszewski G., Kodeboyina D., Burcat A., Leahy D., Montoy D., Wagner A. F., J. Phys. Conf. Ser. 2005, 16, 561–570;

Ruscic B., Int. J. Quantum Chem. 2014, 114, 1097–1101.

BDE (in kcal/mol) values of H−CH2OH (96.11±0.08), CH3O−H (105.2±0.08) and H−CH2CH3 (100.8±0.06) derived from thermodynamic networks: Ruscic B., J. Phys. Chem. A 2015, 119, 7810–7837 PubMed

BDE=96.06±0.15 kcal/mol: Berkowitz J., Ellison G. B., Gutman D., J. Phys. Chem. 1994, 98, 2744–2765.

BDE=105.2±0.7 kcal/mol at 300 K: Ramond T. M., Davico G. E., Schwartz R. L., Lineberger W. C., J. Chem. Phys. 2000, 112, 1158–1169.

BDE=92.8±1.6 kcal/mol: Laarhoven L. J. J., Mulder P., J. Phys. Chem. B 1997, 101, 73–77;

BDE=92±1.0 kcal/mol: Kranenburg M., Ciriano M. V., Cherkasov A., Mulder P., J. Phys. Chem. A 2000, 104, 915–921.

BDE=99.7±1.2 kcal/mol: Wong J. S., MacPhail R. A., Moore C. B., Strauss H. L., J. Phys. Chem. 1982, 86, 1478–1484; actual BDE is probably somewhat lower, but the precise value is uncertain, see for example:

BDE=97±1.0 kcal/mol: from citation [30b];

BDE=98±1.5 kcal mol−1 Ciriano M. V., Korth H.-G., van Scheppingen W. B., Mulder P., J. Am. Chem. Soc. 1999, 121, 6375–6381; the often-referenced BDE of 99.3 kcal mol−1 is probably incorrect and stems from a typo in

Company A., Prat I., Frisch J. R., Mas-Ballesté D. R., Güell M., Juhász G., Ribas X., Münck D. E., Luis J. M., L. Que  Jr. , Costas M., Chem. Eur. J. 2011, 17, 1622–1634; the recommended value of 99.5 kcal mol−1 from citation [23] could not be verified as the original source (Tsang, W. in: PubMed PMC

Lifshitz A. , Shock Waves in Chemistry, Marcel Dekker Inc, New York, 1981, pp. 59–129) was not accessible.

BDE=100.5±0.3 kcal mol−1: Dobis O., Benson S. W., J. Phys. Chem. A 1997, 101, 6030–6042.

See for example: Schwarz H., Angew. Chem. Int. Ed. 2011, 50, 10096–10115 and citations therein. PubMed

For details please refer to Supporting Information. For B3LYP functional refer to:

Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652;

Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785–789; For GD3-BJ dispersion refer to: PubMed

Grimme S., Ehrlich S., Goerigk L., J. Comp. Chem. 2011, 32, 1456-1465; For pc-3 basis set refer to: PubMed

Jensen F., Helgaker T., J. Chem. Phys. 2004, 121, 3463–3470; for basis set exchange refer to: PubMed

Pritchard B. P., Altarawy D., Didier B., Gibson T. D., Windus T. L., J. Chem. Inf. Model. 2019, 59, 4814–4820. PubMed

For instrument description please refer to: Jašík J., Žabka J., Roithová J., Gerlich D., Int. J. Mass Spectrom. 2013, 354-355, 204–210.

Zeng X., Gerken M., Beckers H., Willner H., J. Phys. Chem. A 2010, 114, 7624–7630. PubMed

Besenyei G., Párkányi L., Foch I., Simándi L. I., Kálmán A., J. Chem. Soc., Perkin Trans. 2 2000, 1798–1802.

Rizzo T. R., Stearns J. A., Boyarkin O. V., Int. Rev. Phys. Chem. 2009, 28, 481–515.

For synthesis of Nonaflyl azide:

Zhu S.-Z., J. Chem. Soc., Perkin Trans. 1 1994, 2077–2081;

Trastoy B., Pérez-Ojeda M. E., Sastre R., Chiara J. L., Chem. Eur. J. 2010, 16, 3833–3841; For synthesis of 3-azidosulfonyl-3H-imidazol-1-ium Hydrogen Sulfate: PubMed

Potter G. T., Jayson G. C., Miller G. J., Gardiner J. M., J. Org. Chem. 2016, 81, 3443–3446. PubMed

Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652;

Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785–789. PubMed

Grimme S., Ehrlich S., Goerigk L., J. Comp. Chem. 2011, 32, 1456–1465. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace