Sulfonyl Nitrene and Amidyl Radical: Structure and Reactivity
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
740.018.022
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
17-14510S
Grantová Agentura České Republiky
682275
European Research Council - International
PubMed
35266598
PubMed Central
PMC9323475
DOI
10.1002/chem.202104493
Knihovny.cz E-zdroje
- Klíčová slova
- amidyl radical, ion spectroscopy, nitrene, photocatalysis, reaction mechanisms,
- MeSH
- azidy * MeSH
- iminy * chemie MeSH
- protony MeSH
- transport elektronů MeSH
- vodík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azidy * MeSH
- iminy * MeSH
- phenylnitrene MeSH Prohlížeč
- protony MeSH
- vodík MeSH
Photocatalytic generation of nitrenes and radicals can be used to tune or even control their reactivity. Photocatalytic activation of sulfonyl azides leads to the elimination of N2 and the resulting reactive species initiate C-H activations and amide formation reactions. Here, we present reactive radicals that are generated from sulfonyl azides: sulfonyl nitrene radical anion, sulfonyl nitrene and sulfonyl amidyl radical, and test their gas phase reactivity in C-H activation reactions. The sulfonyl nitrene radical anion is the least reactive and its reactivity is governed by the proton coupled electron transfer mechanism. In contrast, sulfonyl nitrene and sulfonyl amidyl radicals react via hydrogen atom transfer pathways. These reactivities and detailed characterization of the radicals with vibrational spectroscopy and with DFT calculations provide information necessary for taking control over the reactivity of these intermediates.
Zobrazit více v PubMed
For review of pioneer research see: Abramovitch R. A., Davis B. A., Chem. Rev. 1964, 64, 149–185.
Kuijpers P. F., van der Vlugt J. I., Schneider S., de Bruin B., Chem. Eur. J. 2017, 23, 13819–13829. PubMed PMC
For initial nonaflyl azide reactivity studies, please refer to:
Shi-zheng Z., Tetrahedron Lett. 1992, 33, 6503–6504;
Zhu S.-Z., J. Chem. Soc., Perkin Trans. 1 1994, 2077–2081.
Pioneer EPR studies:
Smolinsky G., Wasserman E., Yager W. A., J. Am. Chem. Soc. 1962, 84, 3220–3221;
Wasserman E., Smolinsky G., Yager W. A., J. Am. Chem. Soc. 1964, 86, 3166–3167;
Moriarty R. M., Rahman M., King G. J., J. Am. Chem. Soc. 1966, 88, 842–843;
Roberts B. P., Winter J. N., J. Chem. Soc., Perkin Trans. 2 1979, 1353–1361; Recent reviews on metalonitrenes:
Kuijpers P. F., van der Vlugt J. I., Schneider S., de Bruin B., Chem. Eur. J. 2017, 23, 13819–13829; PubMed PMC
Moegling J., Hoffmann A., Thomas F., Orth N., Liebhäuser P., Herber U., Rampmaier R., Stanek J., Fink G., Ivanović-Burmazović I., Herres-Pawlis S., Angew. Chem. Int. Ed. 2018, 57, 9154–9159; Gas-phase studies on metalonitrenes: PubMed
Fedorov A., Couzijn E. P. A., Nagornova N. S., Boyarkin O. V., Rizzo T. R., Chen P., J. Am. Chem. Soc. 2010, 132, 13789–13798; PubMed
Fedorov A., Batiste L., Couzijn E. P. A., Chen P., ChemPhysChem 2010, 11, 1002–1005. PubMed
Zeng X., Beckers H., Neuhaus P., Grote D., Sander W., Z. Anorg. Allg. Chem. 2012, 638, 526–533;
Deng G., Dong X., Liu Q., Li D., Li H., Sun Q., Zeng X., Phys. Chem. Chem. Phys. 2017, 19, 3792–3799; PubMed
Dong X., Deng G., Xu J., Li H., Zeng X., J. Phys. Chem. A 2018, 122, 8511–8519; PubMed
Yang Y., Chu X., Lu Y., Abe M., Zeng X., Molecules 2018, 23, 3312; PubMed PMC
Yang Y., Deng G., Lu Y., Liu Q., Abe M., Zeng X., J. Phys. Chem. A 2019, 123, 9311–9320. PubMed
Zeng X., Beckers H., Willner H., Neuhaus P., Grote D., Sander W., J. Phys. Chem. A 2015, 119, 2281–2288; PubMed
Kuzmin A. V., Neumann C., van Wilderen L. J. G. W., Shainyan B. A., Bredenbeck J., Phys. Chem. Chem. Phys. 2016, 18, 8662–8672. PubMed
Zeng X., Beckers H., Willner H., Neuhaus P., Grote D., Sander W., J. Phys. Chem. A 2015, 119, 2281–2288; PubMed
Kuzmin A. V., Neumann C., van Wilderen L. J. G. W., Shainyan B. A., Bredenbeck J., Phys. Chem. Chem. Phys. 2016, 18, 8662–8672. PubMed
Kubicki J., Luk H. L., Zhang Y., Vyas S., Peng H.-L., Hadad C. M., Platz M. S., J. Am. Chem. Soc. 2012, 134, 7036–7044. PubMed
For related in silico studies, please refer to:
Shainyan B. A., Kuzmin A. V., J. Phys. Org. Chem. 2014, 27, 527–531;
Kuzmin A. V., Shainyan B. A., J. Phys. Org. Chem. 2014, 27, 794–802;
Kuzmin A. V., Shainyan B. A., J. Mol. Struct. 2018, 1172, 8–16.
Hernández-Guerra D., Hlavačková A., Pramthaisong C., Vespoli I., Pohl R., Slanina T., Jahn U., Angew. Chem. Int. Ed. 2019, 58, 12440–12445. For recent related systems studies refer to: PubMed
Bagal D. B., Park S.-W., Song H.-J., Chang S., Chem. Commun. 2017, 53, 8798–8801; PubMed
Shu W., Nevado C., Angew. Chem. Int. Ed. 2017, 56, 1881–1884; PubMed
Jung H., Keum H., Kweon J., Chang S., J. Am. Chem. Soc. 2020, 142, 5811–5818. PubMed
Zhou S. F., Lv K., Fu R., Zhu C. L., Bao X. G., ACS Catal. 2021, 11, 5026-5034.
Such intermediate has been proposed in a similar photocatalytic system:
Guo Y., Pei C., Jana S., Koenigs R. M., ACS Catal. 2021, 11, 337–342; and in electrochemical systems:
Van Galen D. A., Barnes J. H., Hawley M. D., J. Org. Chem. 1986, 51, 2544–2550;
Herbranson D. E., Hawley M. D., J. Org. Chem. 1990, 55, 4297–4303.
Chen F. J., Huang X., Yang C., Jiang H. F., Zeng W., J. Org. Chem. 2021, 86, 14572-14585; PubMed
Guo Y., Pei C., Koenigs R. M., Nat. Commun. 2022, 13, 86. PubMed PMC
Armentrout P. B., Int. J. Mass Spectrom. 2000, 200, 219–241;
Armentrout P. B., J. Am. Soc. Mass Spectrom. 2002, 13, 419–434; PubMed
Chen P., Angew. Chem. Int. Ed. 2003, 42, 2832–2847; PubMed
Liu F., Zhang X.-G., Liyanage R., Armentrout P. B., J. Chem. Phys. 2004, 121, 10976; PubMed
Roithová J., Schröder D., Chem. Rev. 2010, 110, 1170–1211; PubMed
Schröder D., Acc. Chem. Res. 2012, 45, 1521–1532. PubMed
Bieske E. J., Dopfer O., Chem. Rev. 2000, 100, 3963–3998; PubMed
Oomens J., Sartakov B. G., Meijer G., Von Helden G., Int. J. Mass Spectrom. 2006, 254, 1–19;
MacAleese L., Maitre P., Mass Spectrom. Rev. 2007, 26, 583–605; PubMed
Roithova J., Chem. Soc. Rev. 2012, 41, 547–559; PubMed
Wolk A. B., Leavitt C. M., Garand E., Johnson M. A., Acc. Chem. Res. 2014, 47, 202–210; PubMed
Heine N., Asmis K. R., Int. Rev. Phys. Chem. 2015, 34, 1–34;
Rijs A. M., Oomens J., in Gas-Phase IR Spectroscopy and Structure of Biological Molecules, Springer International Publishing, Cham, 2015, pp. 1–42;
Roithova J., Gray A., Andris E., Jasik J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230; PubMed
Gerlich D., J. Chin. Chem. Soc. 2018, 65, 637–653;
Jasikova L., Roithova J., Chem. Eur. J. 2018, 24, 3374–3390; PubMed
Schwarz H., Asmis K. R., Chem. Eur. J. 2019, 25, 2112–2126; PubMed
Martens J., van Outersterp R. E., Vreeken R. J., Cuyckens F., Coene K. L. M., Engelke U. F., Kluijtmans L. A. J., Wevers R. A., Buydens L. M. C., Redlich B., Berden G., Oomens J., Anal. Chim. Acta 2020, 1093, 1–15. PubMed
In-liquid ionization (see Figure S4), for negative MS: sheat 14, aux 0 spray voltage 5.5 kV, capillary temperature 250 °C, Capillary voltage 0 V, Tube lens voltage −60 V; for positive MS: sheat 10, aux 0 spray voltage 5.5 kV, capillary temperature 250 °C, Capillary voltage 0 V, Tube lens voltage 50 V.
Sample irradiated for 5 minutes (see Figure S2). Then irradiation stopped and sample sprayed. The m/s pattern of the sample did not change in course of hours.
For recent review see: Zelenka J., Roithová J., ChemBioChem 2020, 21, 2232–2240. PubMed
For application of in-source CID please refer to (and citations therein):
Marquet P., Venisse N., Lacassie É., Lachâtre G., Analusis 2000, 28, 925–934;
Crellin K. C., Sible E., Van Antwerp J., Int. J. Mass Spectrom. 2003, 222, 281–311;
Andris E., Jašík J., Gómez L., Costas M., Roithová J., Angew. Chem. Int. Ed. 2016, 128, 3701–3705; PubMed PMC
Parcher J. F., Wang M., Chittiboyina A. G., Khan I. A., Drug Test. Anal. 2018, 10, 28–36. PubMed
The nomenclature of RN⋅- is unclear. Most of the reports use the term nitrene radical anion, which however is probably not correct. Alternatively, RN.− could be referred to as imidyl radical anion which is however almost absent in literature.
92 % of acetylacetone is in the enol-form in the gas phase at 25 °C. Conant J. B., Thompson A. F., J. Am. Chem. Soc. 1932, 54, 4039–4047. For thermal dependence see:
Briegleb G., Strohmeier W., Angew. Chem. 1952, 64, 409–417.
BDE=88.6±2 kcal/mol: Janousek B. K., Reed K. J., Brauman J. I., J. Am. Chem. Soc. 1980, 102, 3125–3129.
BDE=76.0±1.2 kcal/mol: Tsang W., J. Phys. Chem. 1986, 90, 1152–1155.
Andris E., Navrátil R., Jašík J., Puri M., Costas M., Que L., Roithová J., J. Am. Chem. Soc. 2018, 140, 14391–14400. PubMed
For handbook, refer to: Luo Y.-R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, 2007.
BDE=90.3 kcal/mol: Yoon M.-C., Choi Y. S., Kim S. K., J. Chem. Phys. 1999, 110, 11850–11855.
C−H in the keto form. Heat of enolization is 2.4±0.2 kcal/mol: Powling J., Bernstein H. J., J. Am. Chem. Soc. 1951, 73, 4353–4356.
ATcT value =96.32±0.23: B. Ruscic, D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network (2021); available at ATcT.anl.gov.
Ruscic B., Pinzon R. E., Morton M. L., von Laszevski G., Bittner S. J., Nijsure S. G., Amin K. A., Minkoff M., Wagner A. F., J. Phys. Chem. A 2004, 108, 9979–9997;
Ruscic B., Pinzon R. E., von Laszewski G., Kodeboyina D., Burcat A., Leahy D., Montoy D., Wagner A. F., J. Phys. Conf. Ser. 2005, 16, 561–570;
Ruscic B., Int. J. Quantum Chem. 2014, 114, 1097–1101.
BDE (in kcal/mol) values of H−CH2OH (96.11±0.08), CH3O−H (105.2±0.08) and H−CH2CH3 (100.8±0.06) derived from thermodynamic networks: Ruscic B., J. Phys. Chem. A 2015, 119, 7810–7837 PubMed
BDE=96.06±0.15 kcal/mol: Berkowitz J., Ellison G. B., Gutman D., J. Phys. Chem. 1994, 98, 2744–2765.
BDE=105.2±0.7 kcal/mol at 300 K: Ramond T. M., Davico G. E., Schwartz R. L., Lineberger W. C., J. Chem. Phys. 2000, 112, 1158–1169.
BDE=92.8±1.6 kcal/mol: Laarhoven L. J. J., Mulder P., J. Phys. Chem. B 1997, 101, 73–77;
BDE=92±1.0 kcal/mol: Kranenburg M., Ciriano M. V., Cherkasov A., Mulder P., J. Phys. Chem. A 2000, 104, 915–921.
BDE=99.7±1.2 kcal/mol: Wong J. S., MacPhail R. A., Moore C. B., Strauss H. L., J. Phys. Chem. 1982, 86, 1478–1484; actual BDE is probably somewhat lower, but the precise value is uncertain, see for example:
BDE=97±1.0 kcal/mol: from citation [30b];
BDE=98±1.5 kcal mol−1 Ciriano M. V., Korth H.-G., van Scheppingen W. B., Mulder P., J. Am. Chem. Soc. 1999, 121, 6375–6381; the often-referenced BDE of 99.3 kcal mol−1 is probably incorrect and stems from a typo in
Company A., Prat I., Frisch J. R., Mas-Ballesté D. R., Güell M., Juhász G., Ribas X., Münck D. E., Luis J. M., L. Que Jr. , Costas M., Chem. Eur. J. 2011, 17, 1622–1634; the recommended value of 99.5 kcal mol−1 from citation [23] could not be verified as the original source (Tsang, W. in: PubMed PMC
Lifshitz A. , Shock Waves in Chemistry, Marcel Dekker Inc, New York, 1981, pp. 59–129) was not accessible.
BDE=100.5±0.3 kcal mol−1: Dobis O., Benson S. W., J. Phys. Chem. A 1997, 101, 6030–6042.
See for example: Schwarz H., Angew. Chem. Int. Ed. 2011, 50, 10096–10115 and citations therein. PubMed
For details please refer to Supporting Information. For B3LYP functional refer to:
Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652;
Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785–789; For GD3-BJ dispersion refer to: PubMed
Grimme S., Ehrlich S., Goerigk L., J. Comp. Chem. 2011, 32, 1456-1465; For pc-3 basis set refer to: PubMed
Jensen F., Helgaker T., J. Chem. Phys. 2004, 121, 3463–3470; for basis set exchange refer to: PubMed
Pritchard B. P., Altarawy D., Didier B., Gibson T. D., Windus T. L., J. Chem. Inf. Model. 2019, 59, 4814–4820. PubMed
For instrument description please refer to: Jašík J., Žabka J., Roithová J., Gerlich D., Int. J. Mass Spectrom. 2013, 354-355, 204–210.
Zeng X., Gerken M., Beckers H., Willner H., J. Phys. Chem. A 2010, 114, 7624–7630. PubMed
Besenyei G., Párkányi L., Foch I., Simándi L. I., Kálmán A., J. Chem. Soc., Perkin Trans. 2 2000, 1798–1802.
Rizzo T. R., Stearns J. A., Boyarkin O. V., Int. Rev. Phys. Chem. 2009, 28, 481–515.
For synthesis of Nonaflyl azide:
Zhu S.-Z., J. Chem. Soc., Perkin Trans. 1 1994, 2077–2081;
Trastoy B., Pérez-Ojeda M. E., Sastre R., Chiara J. L., Chem. Eur. J. 2010, 16, 3833–3841; For synthesis of 3-azidosulfonyl-3H-imidazol-1-ium Hydrogen Sulfate: PubMed
Potter G. T., Jayson G. C., Miller G. J., Gardiner J. M., J. Org. Chem. 2016, 81, 3443–3446. PubMed
Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652;
Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785–789. PubMed
Grimme S., Ehrlich S., Goerigk L., J. Comp. Chem. 2011, 32, 1456–1465. PubMed