Finite Element Analysis of Silver Nanorods, Spheres, Ellipsoids and Core-Shell Structures for Hyperthermia Treatment of Cancer

. 2022 Feb 26 ; 15 (5) : . [epub] 20220226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35269017

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407 Structural and Investment Founds of Europe Union

The finite element analysis technique was used to investigate the suitability of silver nanorods, spheres, ellipsoids and core−shell structures for the hyperthermia treatment of cancer. The temperature of the silver nanostructures was raised from 42 to 46 °C, in order to kill the cancerous cells. The time taken by the nanostructures to attain this temperature, with external source heating, was also estimated. The heat transfer module in COMSOL Multiphysics was used for the finite element analysis of hyperthermia, based on silver nanostructures. The thermal response of different shapes of silver nanostructures was evaluated by placing them inside the spherical domain of the tumor tissue. The proposed geometries were heated at different time intervals. Optimization of the geometries was performed to achieve the best treatment temperature. It was observed that silver nanorods quickly attain the desired temperature, as compared to other shapes. The silver nanorods achieved the highest temperature of 44.3 °C among all the analyzed geometries. Moreover, the central volume, used to identify the thermal response, was the maximum for the silver nano-ellipsoids. Thermal equilibrium in the treatment region was attained after 0.5 μs of heating, which made these structures suitable for hyperthermia treatment.

Zobrazit více v PubMed

Balmain A., Gray J.W., Ponder B.A.J. The genetics and genomics of cancer. Nat. Genet. 2003;33:238–244. doi: 10.1038/ng1107. PubMed DOI

Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI

Conde J., Doria G., Baptista P. Noble metal nanoparticles applications in cancer. J. Drug Deliv. 2012;2012:751075. doi: 10.1155/2012/751075. PubMed DOI PMC

Wang X., Yang L., Chen Z., Shin D.M. Application of Nanotechnology in Cancer Therapy and Imaging. CA Cancer J. Clin. 2008;58:97–110. doi: 10.3322/CA.2007.0003. PubMed DOI

Barreto J.A., O’Malley W., Kubeil M., Graham B., Stephan H., Spiccia L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011;23:H18–H40. doi: 10.1002/adma.201100140. PubMed DOI

Salunkhe A.B., Khot V.M., Pawar S.H. Magnetic hyperthermia with magnetic nanoparticles: A status review. Curr. Top. Med. Chem. 2014;14:572–594. doi: 10.2174/1568026614666140118203550. PubMed DOI

Pinheiro P.S., Callahan K.E., Jones P.D., Morris C., Ransdell J.M., Kwon D., Brown C.P., Kobetz E.N. Liver cancer: A leading cause of cancer death in the United States and the role of the 1945–1965 birth cohort by ethnicity. JHEP Rep. 2019;1:162–169. doi: 10.1016/j.jhepr.2019.05.008. PubMed DOI PMC

Robinson P.J. Imaging liver metastases: Current limitations and future prospects. Br. J. Radiol. 2000;73:234–241. doi: 10.1259/bjr.73.867.10817037. PubMed DOI

Scheele J., Stangl R., Altendorf-Hofmann A. Hepatic metastases from colorectal carcinoma: Impact of surgical resection on the natural history. Br. J. Surg. 1990;77:1241–1246. doi: 10.1002/bjs.1800771115. PubMed DOI

Cady B., Stone M.D., McDermott W.V., Jenkins R.L., Bothe A., Lavin P.T., Lovett E.J., Steele G.D. Technical and Biological Factors in Disease-Free Survival After Hepatic Resection for Colorectal Cancer Metastases. Arch. Surg. 1992;127:561–569. doi: 10.1001/archsurg.1992.01420050085011. PubMed DOI

Praetorius N.P., Mandal T.K. Engineered nanoparticles in cancer therapy. Recent Pat. Drug Deliv. Formul. 2007;1:37–51. doi: 10.2174/187221107779814104. PubMed DOI

Giustini A.J., Petryk A.A., Cassim S.M., Tate J.A., Baker I., Hoopes P.J. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life. 2010;1:17–32. doi: 10.1142/S1793984410000067. PubMed DOI PMC

Yagawa Y., Tanigawa K., Kobayashi Y., Yamamoto M. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J. Cancer Metastasis Treat. 2017;3:218. doi: 10.20517/2394-4722.2017.35. DOI

Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J. 2011;6:1342–1347. doi: 10.1002/biot.201100045. PubMed DOI

Kharat P.B., Somvanshi S.B., Khirade P.P., Jadhav K.M. Induction Heating Analysis of Surface-Functionalized Nanoscale CoFe2O4 for Magnetic Fluid Hyperthermia toward Noninvasive Cancer Treatment. ACS Omega. 2020;5:23378–23384. doi: 10.1021/acsomega.0c03332. PubMed DOI PMC

Chang D., Lim M., Goos J., Qiao R., Ng Y.Y., Mansfeld F.M., Jackson M., Davis T.P., Kavallaris M. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front. Pharmacol. 2018;9:831. doi: 10.3389/fphar.2018.00831. PubMed DOI PMC

Somvanshi S.B., Kharat P.B., Jadhav K.M. Surface Functionalized Superparamagnetic Zn-Mg Ferrite Nanoparticles for Magnetic Hyperthermia Application Towards Noninvasive Cancer Treatment. Macromol. Symp. 2021;400:2100124. doi: 10.1002/masy.202100124. DOI

Silva A.C., Oliveira T.R., Mamani J.B., Malheiros S.M.F., Malavolta L., Pavon L.F., Sibov T.T., Amaro E., Jr., Tannús A., Vidoto E.L.G., et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed. 2011;6:591–603. doi: 10.2147/ijn.s14737. PubMed DOI PMC

Song C.W., Park H.J., Lee C.K., Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperth. 2005;21:761–767. doi: 10.1080/02656730500204487. PubMed DOI

Chatterjee D.K., Diagaradjane P., Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2011;2:1001–1014. doi: 10.4155/tde.11.72. PubMed DOI PMC

Kim S., Moon M.J., Surendran S.P., Jeong Y.Y. Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics. 2019;11:306. doi: 10.3390/pharmaceutics11070306. PubMed DOI PMC

Falk M.H., Issels R.D. Hyperthermia in oncology. Int. J. Hyperth. 2001;17:1–18. doi: 10.1080/02656730150201552. PubMed DOI

Feldman A.L., Libutti S.K., Pingpank J.F., Bartlett D.L., Beresnev T.H., Mavroukakis S.M., Steinberg S.M., Liewehr D.J., Kleiner D.E., Alexander H.R. Analysis of Factors Associated with Outcome in Patients With Malignant Peritoneal Mesothelioma Undergoing Surgical Debulking and Intraperitoneal Chemotherapy. J. Clin. Oncol. 2003;21:4560–4567. doi: 10.1200/JCO.2003.04.150. PubMed DOI

Roizin-Towle L., Pirro J.P. The response of human and rodent cells to hyperthermia. Int. J. Radiat. Oncol. 1991;20:751–756. doi: 10.1016/0360-3016(91)90018-Y. PubMed DOI

Sanchez L.M., Alvarez V.A. Advances in Magnetic Noble Metal/Iron-Based Oxide Hybrid Nanoparticles as Biomedical Devices. Bioengineering. 2019;6:75. doi: 10.3390/bioengineering6030075. PubMed DOI PMC

Fiorani D., Dormann J., Cherkaoui R., Tronc E., Lucari F., D’Orazio F., Spinu L., Nogues M., García-Santiago A., Testa A.M. Collective magnetic state in nanoparticles systems. J. Magn. Magn. Mater. 1999;196–197:143–147. doi: 10.1016/S0304-8853(98)00694-5. DOI

Hervault A., Thanh N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6:11553–11573. doi: 10.1039/C4NR03482A. PubMed DOI

Nguyen M.D., Tran H.-V., Xu S., Lee T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021;11:11301. doi: 10.3390/app112311301. PubMed DOI PMC

Jeon M., Halbert M.V., Stephen Z.R., Zhang M. Iron Oxide Nanoparticles as T 1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv. Mater. 2021;33:e1906539. doi: 10.1002/adma.201906539. PubMed DOI PMC

Jordan A., Scholz R., Wust P., Fähling H., Krause J., Wlodarczyk W., Sander B., Vogl T., Felix R. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int. J. Hyperth. 1997;13:587–605. doi: 10.3109/02656739709023559. PubMed DOI

Dombrovsky L.A., Timchenko V., Jackson M., Yeoh G.H. A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int. J. Heat Mass Transf. 2011;54:5459–5469. doi: 10.1016/j.ijheatmasstransfer.2011.07.045. DOI

Pavel M., Stancu A. Ferromagnetic Nanoparticles Dose Based on Tumor Size in Magnetic Fluid Hyperthermia Cancer Therapy. IEEE Trans. Magn. 2009;45:5251–5254. doi: 10.1109/TMAG.2009.2031076. DOI

Henrich F., Rahn H., Odenbach S. Heat transition during magnetic heating treatment: Study with tissue models and simulation. J. Magn. Magn. Mater. 2015;380:353–359. doi: 10.1016/j.jmmm.2014.09.006. DOI

Rengan A.K., Bukhari A., Pradhan A., Malhotra R., Banerjee R., Srivastava R., De A. In Vivo Analysis of Biodegradable Liposome Gold Nanoparticles as Efficient Agents for Photothermal Therapy of Cancer. Nano Lett. 2015;15:842–848. doi: 10.1021/nl5045378. PubMed DOI

Wu L., Cheng J., Liu W., Chen X. Numerical Analysis of Electromagnetically Induced Heating and Bioheat Transfer for Magnetic Fluid Hyperthermia. IEEE Trans. Magn. 2015;51:1–4. doi: 10.1109/tmag.2014.2358268. PubMed DOI

Lara HH Garza-Trevin E.N., Ixtepan-Turrent L., Singh D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 2011;9:30. doi: 10.1186/1477-3155-9-30. PubMed DOI PMC

Lu L., Sun R.W.-Y., Chen R., Hui C.-K., Ho C.-M., Luk J.M., Lau G.K.K., Che C.-M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008;13:253–262. doi: 10.1177/135965350801300210. PubMed DOI

Alshehri A.H., Jakubowska M., Młożniak A., Horaczek M., Rudka D., Free C., Carey J.D. Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications. ACS Appl. Mater. Interfaces. 2012;4:7007–7010. doi: 10.1021/am3022569. PubMed DOI

Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC

Cameron S.J., Hosseinian F., Willmore W.G. A current overview of the biological and cellular effects of nanosilver. Int. J. Mol. Sci. 2018;19:2030. doi: 10.3390/ijms19072030. PubMed DOI PMC

Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968;26:62–69. doi: 10.1016/0021-9797(68)90272-5. DOI

COMSOL . COMSOL Multiphysics Heat Transfer Module, User Manual. COMSOL Inc.; Burlington, MA, USA: 2008.

Charny C.K. Advances in Heat Transfer. Volume 22. Elsevier BV; Amsterdam, The Netherlands: 1992. Mathematical Models of Bioheat Transfer; pp. 19–155.

Pennes H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948;1:93–122. doi: 10.1152/jappl.1948.1.2.93. PubMed DOI

Ng E.-K., Sudharsan N. Effect of blood flow, tumour and cold stress in a female breast: A novel time-accurate computer simulation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001;215:393–404. doi: 10.1243/0954411011535975. PubMed DOI

Taloub S., Hobar F., Astefanoaei I., Dumitru I., Caltun O.F. FEM Investigation of coated magnetic nanoparticles for hyperthermia. Nanosci. Nanotechnol. 2016;6:55–61.

Saw C.B., Loper A., Komanduri K., Combine T., Huq S., Scicutella C. Determination of CT-to-density conversion relationship for image-based treatment planning systems. Med Dosim. 2005;30:145–148. doi: 10.1016/j.meddos.2005.05.001. PubMed DOI

Govorov A.O., Zhang W., Skeini T., Richardson H., Lee J., Kotov N.A. Gold nanoparticle ensembles as heaters and actuators: Melting and collective plasmon resonances. Nanoscale Res. Lett. 2006;1:84–90. doi: 10.1007/s11671-006-9015-7. DOI

Tippa S., Narahari M., Pendyala R. AIP Conference Proceedings. Volume 1787. AIP Publishing LLC; Melville, NY, USA: 2016. Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate; p. 020014.

Kim D.-H., Nikles D.E., Brazel C.S. Synthesis and Characterization of Multifunctional Chitosan-MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery. Materials. 2010;3:4051–4065. doi: 10.3390/ma3074051. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...