Finite Element Analysis of Silver Nanorods, Spheres, Ellipsoids and Core-Shell Structures for Hyperthermia Treatment of Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
Structural and Investment Founds of Europe Union
PubMed
35269017
PubMed Central
PMC8911261
DOI
10.3390/ma15051786
PII: ma15051786
Knihovny.cz E-zdroje
- Klíčová slova
- COMSOL Multiphysics, finite element analyses, hyperthermia, silver nanostructures, surface coating,
- Publikační typ
- časopisecké články MeSH
The finite element analysis technique was used to investigate the suitability of silver nanorods, spheres, ellipsoids and core−shell structures for the hyperthermia treatment of cancer. The temperature of the silver nanostructures was raised from 42 to 46 °C, in order to kill the cancerous cells. The time taken by the nanostructures to attain this temperature, with external source heating, was also estimated. The heat transfer module in COMSOL Multiphysics was used for the finite element analysis of hyperthermia, based on silver nanostructures. The thermal response of different shapes of silver nanostructures was evaluated by placing them inside the spherical domain of the tumor tissue. The proposed geometries were heated at different time intervals. Optimization of the geometries was performed to achieve the best treatment temperature. It was observed that silver nanorods quickly attain the desired temperature, as compared to other shapes. The silver nanorods achieved the highest temperature of 44.3 °C among all the analyzed geometries. Moreover, the central volume, used to identify the thermal response, was the maximum for the silver nano-ellipsoids. Thermal equilibrium in the treatment region was attained after 0.5 μs of heating, which made these structures suitable for hyperthermia treatment.
Department of Mechanical Engineering Technology National Skills University Islamabad 44000 Pakistan
Department of Physics Faisalabad Campus Riphah International University Faisalabad 44000 Pakistan
Department of Physics University of Agriculture Faisalabad 38040 Pakistan
Electrical Engineering Department College of Engineering Najran University Najran 61441 Saudi Arabia
Faculty of Mechanical Engineering Poznan University of Technology 60 965 Poznan Poland
Zobrazit více v PubMed
Balmain A., Gray J.W., Ponder B.A.J. The genetics and genomics of cancer. Nat. Genet. 2003;33:238–244. doi: 10.1038/ng1107. PubMed DOI
Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI
Conde J., Doria G., Baptista P. Noble metal nanoparticles applications in cancer. J. Drug Deliv. 2012;2012:751075. doi: 10.1155/2012/751075. PubMed DOI PMC
Wang X., Yang L., Chen Z., Shin D.M. Application of Nanotechnology in Cancer Therapy and Imaging. CA Cancer J. Clin. 2008;58:97–110. doi: 10.3322/CA.2007.0003. PubMed DOI
Barreto J.A., O’Malley W., Kubeil M., Graham B., Stephan H., Spiccia L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011;23:H18–H40. doi: 10.1002/adma.201100140. PubMed DOI
Salunkhe A.B., Khot V.M., Pawar S.H. Magnetic hyperthermia with magnetic nanoparticles: A status review. Curr. Top. Med. Chem. 2014;14:572–594. doi: 10.2174/1568026614666140118203550. PubMed DOI
Pinheiro P.S., Callahan K.E., Jones P.D., Morris C., Ransdell J.M., Kwon D., Brown C.P., Kobetz E.N. Liver cancer: A leading cause of cancer death in the United States and the role of the 1945–1965 birth cohort by ethnicity. JHEP Rep. 2019;1:162–169. doi: 10.1016/j.jhepr.2019.05.008. PubMed DOI PMC
Robinson P.J. Imaging liver metastases: Current limitations and future prospects. Br. J. Radiol. 2000;73:234–241. doi: 10.1259/bjr.73.867.10817037. PubMed DOI
Scheele J., Stangl R., Altendorf-Hofmann A. Hepatic metastases from colorectal carcinoma: Impact of surgical resection on the natural history. Br. J. Surg. 1990;77:1241–1246. doi: 10.1002/bjs.1800771115. PubMed DOI
Cady B., Stone M.D., McDermott W.V., Jenkins R.L., Bothe A., Lavin P.T., Lovett E.J., Steele G.D. Technical and Biological Factors in Disease-Free Survival After Hepatic Resection for Colorectal Cancer Metastases. Arch. Surg. 1992;127:561–569. doi: 10.1001/archsurg.1992.01420050085011. PubMed DOI
Praetorius N.P., Mandal T.K. Engineered nanoparticles in cancer therapy. Recent Pat. Drug Deliv. Formul. 2007;1:37–51. doi: 10.2174/187221107779814104. PubMed DOI
Giustini A.J., Petryk A.A., Cassim S.M., Tate J.A., Baker I., Hoopes P.J. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life. 2010;1:17–32. doi: 10.1142/S1793984410000067. PubMed DOI PMC
Yagawa Y., Tanigawa K., Kobayashi Y., Yamamoto M. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J. Cancer Metastasis Treat. 2017;3:218. doi: 10.20517/2394-4722.2017.35. DOI
Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol. J. 2011;6:1342–1347. doi: 10.1002/biot.201100045. PubMed DOI
Kharat P.B., Somvanshi S.B., Khirade P.P., Jadhav K.M. Induction Heating Analysis of Surface-Functionalized Nanoscale CoFe2O4 for Magnetic Fluid Hyperthermia toward Noninvasive Cancer Treatment. ACS Omega. 2020;5:23378–23384. doi: 10.1021/acsomega.0c03332. PubMed DOI PMC
Chang D., Lim M., Goos J., Qiao R., Ng Y.Y., Mansfeld F.M., Jackson M., Davis T.P., Kavallaris M. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front. Pharmacol. 2018;9:831. doi: 10.3389/fphar.2018.00831. PubMed DOI PMC
Somvanshi S.B., Kharat P.B., Jadhav K.M. Surface Functionalized Superparamagnetic Zn-Mg Ferrite Nanoparticles for Magnetic Hyperthermia Application Towards Noninvasive Cancer Treatment. Macromol. Symp. 2021;400:2100124. doi: 10.1002/masy.202100124. DOI
Silva A.C., Oliveira T.R., Mamani J.B., Malheiros S.M.F., Malavolta L., Pavon L.F., Sibov T.T., Amaro E., Jr., Tannús A., Vidoto E.L.G., et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed. 2011;6:591–603. doi: 10.2147/ijn.s14737. PubMed DOI PMC
Song C.W., Park H.J., Lee C.K., Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperth. 2005;21:761–767. doi: 10.1080/02656730500204487. PubMed DOI
Chatterjee D.K., Diagaradjane P., Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2011;2:1001–1014. doi: 10.4155/tde.11.72. PubMed DOI PMC
Kim S., Moon M.J., Surendran S.P., Jeong Y.Y. Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics. 2019;11:306. doi: 10.3390/pharmaceutics11070306. PubMed DOI PMC
Falk M.H., Issels R.D. Hyperthermia in oncology. Int. J. Hyperth. 2001;17:1–18. doi: 10.1080/02656730150201552. PubMed DOI
Feldman A.L., Libutti S.K., Pingpank J.F., Bartlett D.L., Beresnev T.H., Mavroukakis S.M., Steinberg S.M., Liewehr D.J., Kleiner D.E., Alexander H.R. Analysis of Factors Associated with Outcome in Patients With Malignant Peritoneal Mesothelioma Undergoing Surgical Debulking and Intraperitoneal Chemotherapy. J. Clin. Oncol. 2003;21:4560–4567. doi: 10.1200/JCO.2003.04.150. PubMed DOI
Roizin-Towle L., Pirro J.P. The response of human and rodent cells to hyperthermia. Int. J. Radiat. Oncol. 1991;20:751–756. doi: 10.1016/0360-3016(91)90018-Y. PubMed DOI
Sanchez L.M., Alvarez V.A. Advances in Magnetic Noble Metal/Iron-Based Oxide Hybrid Nanoparticles as Biomedical Devices. Bioengineering. 2019;6:75. doi: 10.3390/bioengineering6030075. PubMed DOI PMC
Fiorani D., Dormann J., Cherkaoui R., Tronc E., Lucari F., D’Orazio F., Spinu L., Nogues M., García-Santiago A., Testa A.M. Collective magnetic state in nanoparticles systems. J. Magn. Magn. Mater. 1999;196–197:143–147. doi: 10.1016/S0304-8853(98)00694-5. DOI
Hervault A., Thanh N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6:11553–11573. doi: 10.1039/C4NR03482A. PubMed DOI
Nguyen M.D., Tran H.-V., Xu S., Lee T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021;11:11301. doi: 10.3390/app112311301. PubMed DOI PMC
Jeon M., Halbert M.V., Stephen Z.R., Zhang M. Iron Oxide Nanoparticles as T 1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv. Mater. 2021;33:e1906539. doi: 10.1002/adma.201906539. PubMed DOI PMC
Jordan A., Scholz R., Wust P., Fähling H., Krause J., Wlodarczyk W., Sander B., Vogl T., Felix R. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int. J. Hyperth. 1997;13:587–605. doi: 10.3109/02656739709023559. PubMed DOI
Dombrovsky L.A., Timchenko V., Jackson M., Yeoh G.H. A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int. J. Heat Mass Transf. 2011;54:5459–5469. doi: 10.1016/j.ijheatmasstransfer.2011.07.045. DOI
Pavel M., Stancu A. Ferromagnetic Nanoparticles Dose Based on Tumor Size in Magnetic Fluid Hyperthermia Cancer Therapy. IEEE Trans. Magn. 2009;45:5251–5254. doi: 10.1109/TMAG.2009.2031076. DOI
Henrich F., Rahn H., Odenbach S. Heat transition during magnetic heating treatment: Study with tissue models and simulation. J. Magn. Magn. Mater. 2015;380:353–359. doi: 10.1016/j.jmmm.2014.09.006. DOI
Rengan A.K., Bukhari A., Pradhan A., Malhotra R., Banerjee R., Srivastava R., De A. In Vivo Analysis of Biodegradable Liposome Gold Nanoparticles as Efficient Agents for Photothermal Therapy of Cancer. Nano Lett. 2015;15:842–848. doi: 10.1021/nl5045378. PubMed DOI
Wu L., Cheng J., Liu W., Chen X. Numerical Analysis of Electromagnetically Induced Heating and Bioheat Transfer for Magnetic Fluid Hyperthermia. IEEE Trans. Magn. 2015;51:1–4. doi: 10.1109/tmag.2014.2358268. PubMed DOI
Lara HH Garza-Trevin E.N., Ixtepan-Turrent L., Singh D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 2011;9:30. doi: 10.1186/1477-3155-9-30. PubMed DOI PMC
Lu L., Sun R.W.-Y., Chen R., Hui C.-K., Ho C.-M., Luk J.M., Lau G.K.K., Che C.-M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008;13:253–262. doi: 10.1177/135965350801300210. PubMed DOI
Alshehri A.H., Jakubowska M., Młożniak A., Horaczek M., Rudka D., Free C., Carey J.D. Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications. ACS Appl. Mater. Interfaces. 2012;4:7007–7010. doi: 10.1021/am3022569. PubMed DOI
Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC
Cameron S.J., Hosseinian F., Willmore W.G. A current overview of the biological and cellular effects of nanosilver. Int. J. Mol. Sci. 2018;19:2030. doi: 10.3390/ijms19072030. PubMed DOI PMC
Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968;26:62–69. doi: 10.1016/0021-9797(68)90272-5. DOI
COMSOL . COMSOL Multiphysics Heat Transfer Module, User Manual. COMSOL Inc.; Burlington, MA, USA: 2008.
Charny C.K. Advances in Heat Transfer. Volume 22. Elsevier BV; Amsterdam, The Netherlands: 1992. Mathematical Models of Bioheat Transfer; pp. 19–155.
Pennes H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948;1:93–122. doi: 10.1152/jappl.1948.1.2.93. PubMed DOI
Ng E.-K., Sudharsan N. Effect of blood flow, tumour and cold stress in a female breast: A novel time-accurate computer simulation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2001;215:393–404. doi: 10.1243/0954411011535975. PubMed DOI
Taloub S., Hobar F., Astefanoaei I., Dumitru I., Caltun O.F. FEM Investigation of coated magnetic nanoparticles for hyperthermia. Nanosci. Nanotechnol. 2016;6:55–61.
Saw C.B., Loper A., Komanduri K., Combine T., Huq S., Scicutella C. Determination of CT-to-density conversion relationship for image-based treatment planning systems. Med Dosim. 2005;30:145–148. doi: 10.1016/j.meddos.2005.05.001. PubMed DOI
Govorov A.O., Zhang W., Skeini T., Richardson H., Lee J., Kotov N.A. Gold nanoparticle ensembles as heaters and actuators: Melting and collective plasmon resonances. Nanoscale Res. Lett. 2006;1:84–90. doi: 10.1007/s11671-006-9015-7. DOI
Tippa S., Narahari M., Pendyala R. AIP Conference Proceedings. Volume 1787. AIP Publishing LLC; Melville, NY, USA: 2016. Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate; p. 020014.
Kim D.-H., Nikles D.E., Brazel C.S. Synthesis and Characterization of Multifunctional Chitosan-MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery. Materials. 2010;3:4051–4065. doi: 10.3390/ma3074051. PubMed DOI PMC